8.已知集合A={x|y=ln(1-x2)},B={y|y=ex},則集合(∁RA)∪B=( 。
A.(0,1]B.[1,+∞)C.(-∞,-1]∪[1,+∞]D.(-∞,-1]∪(0,+∞)

分析 先將集合A,B化簡,然后求出∁UA,再與B求并集.

解答 解:A={x|y=ln(1-x2)}=(-1,1),B={y|y=ex}=(0,+∞),
∴∁RA=(-∞,-1]∪[1,+∞)
∴(∁RA)∪B=(-∞,-1]∪(0,+∞)
故選:D

點評 本題考察集合的交并補運算,注意集合的表示使用的是描述法,集合A為定義域,而集合B是值域.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(cosx)=cos2x,則f($\frac{1}{3}$)=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}$x2-2ax+4lnx.
(1)求函數(shù)f(x)的極值點;
(2)若函數(shù)f(x)在區(qū)間[2,6]內(nèi)有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知M是△ABC內(nèi)的一點,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,若△MBC,△MAB、△MCA的面積分別為$\frac{1}{2}$,x,y,則$\frac{1}{x}$+$\frac{4}{y}$的最小值是( 。
A.9B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={x∈Z|x2-3x-18<0},B={x|2-x>0},則A∩B等于( 。
A.{3,4,5}B.{-2,-1,0,1}
C.{-5,-4,-3,-2,-1,0,1}D.{-5,-4,-3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在某籃球比賽中,根據(jù)甲和乙兩人的得分情況得到如圖所示的莖葉圖.

(1)從莖葉圖的特征來說明他們誰發(fā)揮得更穩(wěn)定;
(2)用樣本的數(shù)字特征驗證他們誰發(fā)揮得更好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知等差數(shù)列{an}的首項a1=2,公差d=1,等比數(shù)列{bn}的首項b1=1,公比q=2,若數(shù)列{Mn}滿足Mn=ab1+ab2+ab3+…+abn,則數(shù)列{Mn}中小于2016的項的個數(shù)有( 。﹤.
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(理)試卷(解析版) 題型:選擇題

已知是雙曲線的兩個焦點,若在雙曲線上存在點滿足,則雙曲線的離心率的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=2lnx-x2+4x-5的零點個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

同步練習冊答案