已知f(x)=
3•2x-1,x<2
log3(x2-1),x≥2
,則f(f(2))=
 
;若f(a)=3,則實數(shù)a的值為
 
考點:分段函數(shù)的應用,對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用分段函數(shù),由里及外求解第一個空.利用分段函數(shù)通過方程求解即可.
解答: 解:f(x)=
3•2x-1,x<2
log3(x2-1),x≥2
,則f(2)=log3(22-1)=1,
f(f(2))=f(1)=3•21-1=3.
當a<2時,3•2a-1=3,解得a=1,
當a≥2時,log3(a2-1)=3,解得a=2
7
,
故答案為:3;1或2
7
點評:本題考查分段函數(shù)的應用,函數(shù)值的求法,以及方程的跟的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若圓C:(x-a)2+(y-a-1)2=a2與x,y軸都有公共點,則實數(shù)a的取值范圍是( 。
A、(-
1
2
,0)∪(0,+∞)
B、[-
1
2
,0)∪(0,+∞)
C、(-1,-
1
2
]
D、(-∞,-
1
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-2(a+1)x+1在區(qū)間[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是( 。
A、(-∞,1]
B、(-∞,2]
C、[1,+∞)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三條直線2x-y-3=0,4x-3y-5=0和ax+y-3a+1=0相交于同一點P.
(1)求點P的坐標和a的值;
(2)求過點(-2,3)且與點P的距離為2
5
的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,對角線AC與BD交于點O,若
AB
+
AD
=λ
AO
,則λ的值為( 。
A、2
B、1
C、
1
2
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

log535-2log5
7
3
+log57-log51.8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設坐標原點為O,拋物線y2=2x與過焦點的直線交于A、B兩點,則
OA
OB
等于( 。
A、
3
4
B、-
3
4
C、3
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a∈R,則“a>2”是“a2>2a”成立的( 。
A、充分必要條件
B、必要而不充分條件
C、充分而不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線
x2
4
-
y2
12
=1的兩條漸近線與右準線圍成的三角形的面積為
 

查看答案和解析>>

同步練習冊答案