分析 (1)將三角函數(shù)進(jìn)行化簡,利用三角函數(shù)的單調(diào)性即可求f(x)的最小正周期;
(2)根據(jù)三角函數(shù)的表達(dá)式求函數(shù)f(x)的值域;
(3)把x=$\frac{α}{2}$代入求值.
解答 解:(1)∵f(x)=-$\sqrt{3}$sin2x+sinxcosx+$\frac{\sqrt{3}}{2}$,
=-$\sqrt{3}$×$\frac{1-cos2x}{2}$+$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x,
∴f(x)=sin(2x-$\frac{π}{3}$),
∴函數(shù)f(x)的最小正周期為$\frac{2π}{2}$=π;
(2)∵x∈[0,$\frac{π}{2}$],
∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴函數(shù)f(x)的值域是[-$\frac{\sqrt{3}}{2}$,1];
(3)∵f($\frac{α}{2}$)=sin(α-$\frac{π}{3}$)=sinαcos$\frac{π}{3}$-cosαsin$\frac{π}{3}$=$\frac{1}{2}$sinα-$\frac{\sqrt{3}}{2}$cosα=$\frac{1}{4}$,
∴16sin2α-4sinα-11=0,
解得sinα=$\frac{1±3\sqrt{5}}{8}$,
∵α∈(0,π),∴sinα>0
故sinα=$\frac{1+3\sqrt{5}}{8}$.
點(diǎn)評 本題考查正弦定理的應(yīng)用,三角函數(shù)的化簡求值,三角函數(shù)的周期的求法,函數(shù)的值域的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{e}{2}$ | B. | $\frac{\sqrt{e}}{2e}$ | C. | $\frac{2e}{3}$ | D. | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+x+1 | B. | f(x)=x2-x-2 | C. | f(x)=x2-x+1 | D. | f(x)=x2+x-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $\sqrt{2}$+$\sqrt{2}$i | D. | $\sqrt{2}$-$\sqrt{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{3}{5}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com