20.$\frac{|1+i|}{1+i}$+$\frac{1+i}{|1+i|}$=(  )
A.$\sqrt{2}$B.2C.$\sqrt{2}$+$\sqrt{2}$iD.$\sqrt{2}$-$\sqrt{2}$i

分析 直接利用復(fù)數(shù)求模公式和復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:$\frac{|1+i|}{1+i}$+$\frac{1+i}{|1+i|}$=$\frac{\sqrt{2}}{1+i}+\frac{1+i}{\sqrt{2}}=\frac{\sqrt{2}(1-i)}{(1+i)(1-i)}+\frac{1+i}{\sqrt{2}}$
=$\frac{\sqrt{2}-\sqrt{2}i}{2}+\frac{1+i}{\sqrt{2}}=\frac{4}{2\sqrt{2}}=\sqrt{2}$,
故選:A.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,cosAcosB<sinAsinB,則△ABC為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法判定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=-$\sqrt{3}$sin2x+sinxcosx+$\frac{\sqrt{3}}{2}$,
(1)求函數(shù)f(x)的最小正周期;
(2)x∈[0,$\frac{π}{2}$]求函數(shù)f(x)的值域;
(3)若f($\frac{α}{2}$)=$\frac{1}{4}$,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}$(t為參數(shù)),曲線C2:$\frac{x^2}{9}$+$\frac{y^2}{2}$=1.
(Ⅰ)寫出C1的普通方程與C2的參數(shù)方程;
(Ⅱ)過坐標(biāo)原點O做C1的垂線,垂足為A,P為OA中點,當(dāng)α變化時,求P點的軌跡的參數(shù)方程(以α為參數(shù)),并指出它是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.若x>0,y>0,2x+8y-7=xy,求xy的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若sinα=-$\frac{5}{13}$,且α為第四象限角,則tanα的值等于( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.-$\frac{5}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知某幾何體的直觀圖及三視圖如圖所示,三視圖的輪廓均為正方形,則該幾何體的表面積為12+4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$<β<$\frac{π}{2}$,且tanα、tanβ是方程x2+6x+7=0的兩個根,則α+β=-$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={x|1<x<4},B={x|x2-2x-3≤0},則A∩B=( 。
A.[3,4)B.[-1,4)C.(1,3]D.(1,3)

查看答案和解析>>

同步練習(xí)冊答案