15.已知一扇形的弧所對(duì)的圓心角為60°,半徑r=20cm,則扇形的周長(zhǎng)為40+$\frac{20}{3}$πcm.

分析 求出扇形的弧長(zhǎng),即可求出扇形的周長(zhǎng).

解答 解:由題意,扇形的弧長(zhǎng)為$\frac{π}{3}×20$=$\frac{20}{3}$πcm,
∴扇形的周長(zhǎng)為(40+$\frac{20}{3}$π)cm.
故答案為:40+$\frac{20}{3}$π.

點(diǎn)評(píng) 此題主要考查了弧長(zhǎng)公式的應(yīng)用,正確記憶弧長(zhǎng)公式是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.運(yùn)行以下程序框圖,若輸入的$x∈[{-\frac{π}{2},\frac{π}{2}}]$,則輸出的y的范圍是( 。
A.[-1,1]B.[-1,0]C.[0,1]D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=1og1.20.8,b=1og0.70.8,c=1.20.8,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+ax+b(a,b∈R).
(Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.橢圓的方程為$\frac{x^2}{4}+{y^2}=1$,則此橢圓上的點(diǎn)到直線2x-3y+6=0距離的最小值為$\frac{6-\sqrt{13}}{\sqrt{13}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知α、β都是銳角,cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,則tanα=4$\sqrt{3}$,cosβ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x-a,g(x)=a|x|,a∈R.
(1)設(shè)F(x)=f(x)-g(x).
①若a=$\frac{1}{2}$,求函數(shù)y=F(x)的零點(diǎn);
②若函數(shù)y=F(x)存在零點(diǎn),求a的取值范圍.
(2)設(shè)h(x)=f(x)+g(x),x∈[-2,2],若對(duì)任意x1,x2∈[-2,2],|h(x1)-h(x2)|≤6恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知點(diǎn)B(-2,0)、C(2,0),且△ABC的周長(zhǎng)等于14,求頂點(diǎn)A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{3}sinxcosx-{cos^2}x-\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期和對(duì)稱軸;
(2)將函數(shù)f(x)的圖象各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)為原來的2倍,然后向左平移$\frac{π}{3}$個(gè)單位,得函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a+c=6,且g(B)=0,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案