6.已知定義域為R的奇函數(shù)f(x)滿足:當x>0時,f(x)=lnx,則函數(shù)g(x)=f(x)-sin4x的零點的個數(shù)為7.

分析 將函數(shù)g(x)=f(x)-sin4x的零點的個數(shù)轉(zhuǎn)化為f(x)的圖象與sin4x的圖象的交點個數(shù),由數(shù)形結(jié)合可以得知答案.

解答 解:函數(shù)f(x)=sin4x是奇函數(shù),且它的周期為 $\frac{2π}{4}$=$\frac{π}{2}$,
∵g(x)=f(x)-sin4x=0,
∴函數(shù)g(x)=f(x)-sin4x的零點的個數(shù)為
相當于f(x)=sin4x的零點個數(shù),
即f(x)與sin4x的交點個數(shù),
∴畫出二者圖象,由數(shù)形結(jié)合,
可知,在(-∞,0)有3個交點,0處有一個交點,(0,+∞)有3個交點,
故共有7個交點.
∴函數(shù)g(x)=f(x)-sin4x的零點的個數(shù)為7個,
故答案為:7.

點評 本題考查數(shù)形結(jié)合的思想,考查學生靈活轉(zhuǎn)化題目條件的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知z∈C,$\overline{z}$表示z的共軛復數(shù),若z•$\overline{z}$+i•z=$\frac{10}{3+i}$,求復數(shù)z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.(4-8i)i的虛部是( 。
A.4B.4iC.-8D.-8i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
合    計
愛好402060
不愛好203050
合    計6050110
根據(jù)上述數(shù)據(jù)能得出的結(jié)論是( 。
(參考公式與數(shù)據(jù):X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.當X2>3.841時,有95%的把握說事件A與B有關;當X2>6.635時,有99%的把握說事件A與B有關; 當X2<3.841時認為事件A與B無關.)
A.有99%的把握認為“愛好該項運動與性別有關”
B.有99%的把握認為“愛好該項運動與性別無關”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線的兩條漸近線交于B、C兩點,過B、C分別作AC、AB的垂線,兩垂線交于點D.若D到直線BC的距離小于2(a+$\sqrt{{a}^{2}+^{2}}$),則該雙曲線的離心率的取值范圍是( 。
A.(1,2)B.($\sqrt{2}$,2)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.從1~9這9個正整數(shù)中任取2個不同的數(shù),事件A為“取到的2個數(shù)之和為偶數(shù)”,事件B為“取到的2個數(shù)均為偶數(shù)”,則P(B|A)=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若A${\;}_{n}^{3}$=8C${\;}_{n}^{2}$,則n的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設(1+2i)(a+i)的共軛復數(shù)是它本身,其中a為實數(shù),則a=(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)求導正確的是( 。
A.(sinx)′=-cosxB.(cosx)′=sinxC.(2x)′=x•2x-1D.($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$

查看答案和解析>>

同步練習冊答案