函數(shù)f(x)=
4-x2
|x-4|-4
的圖象關(guān)于
 
對(duì)稱.
考點(diǎn):奇偶函數(shù)圖象的對(duì)稱性
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由4-x2≥0,|x-4|-4≠0,可得-2≤x≤2,且x≠0.于是函數(shù)f(x)=
4-x2
|x-4|-4
=
4-x2
x
,判定函數(shù)的奇偶性即可得出.
解答: 解:∵4-x2≥0,|x-4|-4≠0,
∴-2≤x≤2,且x≠0.
∴|x-4|=4-x,
∴函數(shù)f(x)=
4-x2
|x-4|-4
=
4-x2
x
滿足f(-x)=-f(x),
∴函數(shù)f(x)是奇函數(shù),
因此函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
故答案為:原點(diǎn).
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性、函數(shù)的定義域,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中,不正確的個(gè)數(shù)為( 。
①“|x|=|y|”是“x=y”的必要不充分條件;
②命題p:?x∈R,sinx≤1,則?p:?x∈R,sinx>1;
③命題“若x,y都是偶數(shù),則x+y是偶數(shù)”的否命題是“若x,y不是偶數(shù),則x+y不是偶數(shù)”;
④命題p:所有有理數(shù)都是實(shí)數(shù),q:正數(shù)的對(duì)數(shù)都是負(fù)數(shù),則(?p)∨(?q)為真命題.
⑤“m<
1
4
”是“一元二次方程x2+x+m=0有實(shí)數(shù)解”的充分非必要條件.
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
x2
-4x-12的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2lnx-
1
2
ax2-3x,其中a為常數(shù).若當(dāng)x=1時(shí),f(x)取得極值,求a的值,并求出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:方程
x2
1-2m
+
y2
m+2
=1表示雙曲線;命題q:?x0∈R,x02+2mx0+2-m=0
(Ⅰ)若命題p為真命題,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(Ⅲ)求使“p∨q”為假命題的實(shí)數(shù)m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x×|x-1|-3x+1的遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=2,|
b
|=4,若(2
a
+
b
)(
a
-
b
)=-4,求向量
a
b
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x)=f(4-x)且f(2-x)+f(x-2)=0,若f(2)=1,則f(2014)的值是( 。
A、-1B、0C、1D、無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何法)已知圓x2+y2+x-6y+m=0和直線x+2y-3=0交于P、Q兩點(diǎn),且OP⊥OQ(O為坐標(biāo)原點(diǎn)),求該圓的圓心坐標(biāo)及半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案