14.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=bcosC-$\frac{\sqrt{3}}{3}$csinB.
(Ⅰ)求B;
(Ⅱ)若點D為邊AC的中點,BD=1,求△ABC面積的最大值.

分析 (Ⅰ)由正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換化簡已知可得cosBsinC=-$\frac{\sqrt{3}}{3}$sinCsinB,
又sinC≠0,從而可求tanB=-$\sqrt{3}$,結(jié)合B為三角形內(nèi)角,即可得解B的值.
(Ⅱ)由D為邊AC的中點,可得2$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,兩邊平方,設(shè)|$\overrightarrow{BA}$|=c,|$\overrightarrow{BC}$|=a,可得4=a2+c2-ac,結(jié)合基本不等式的應(yīng)用可得ac的最大值,利用三角形面積公式即可得解.

解答 (本題滿分為12分)
解:(Ⅰ)∵a=bcosC-$\frac{\sqrt{3}}{3}$csinB,
∴由正弦定理可得:sinA=sinBcosC-$\frac{\sqrt{3}}{3}$sinCsinB,
∴sin(B+C)=sinBcosC-$\frac{\sqrt{3}}{3}$sinCsinB,
∴sinBcosC+cosBsinC=sinBcosC-$\frac{\sqrt{3}}{3}$sinCsinB,
∴cosBsinC=-$\frac{\sqrt{3}}{3}$sinCsinB,
又∵C為三角形內(nèi)角,可得sinC≠0,
∴tanB=-$\sqrt{3}$,
又∵B為三角形內(nèi)角,可得B=$\frac{2π}{3}$…(6分)
(Ⅱ)如圖,∵點D為邊AC的中點
∴2$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,
∴兩邊平方可得:4|$\overrightarrow{BD}$|2=|$\overrightarrow{BA}$|2+2|$\overrightarrow{BA}$|•|$\overrightarrow{BC}$|•cos∠ABC+|$\overrightarrow{BC}$|2,…(9分)
又∵由(Ⅰ)知B=$\frac{2π}{3}$,
設(shè)|$\overrightarrow{BA}$|=c,|$\overrightarrow{BC}$|=a,
即:4=a2+c2-ac≥ac,(當(dāng)且僅當(dāng)a=c=2時等號成立),
∴S△ABC=$\frac{1}{2}$acsin∠ABC=$\frac{\sqrt{3}}{4}$ac≤$\sqrt{3}$.
∴當(dāng)且僅當(dāng)a=c=2時,△ABC面積的最大值為$\sqrt{3}$.…(12分)

點評 本題主要考查了正弦定理,三角形內(nèi)角和定理,三角函數(shù)恒等變換的應(yīng)用,考查了平面向量及其應(yīng)用,考查了基本不等式,三角形面積公式等知識在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知p:“a≤t+$\frac{16}{t}$對t∈(0,+∞)恒成立”,q:“直線x-2y+a=0與直線x-2y+3=0的距離大于$\sqrt{5}$”,則¬p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.i是虛數(shù)單位,復(fù)數(shù)z滿足(z-2i)(2-i)=5,則z=2+3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,c=2,acosC=csinA,若當(dāng)a=x0時的△ABC有兩解,則x0的取值范圍是(  )
A.(1,2)B.(1,$\sqrt{3}$)C.($\sqrt{2}$,2$\sqrt{2}$)D.(2,2$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(x-2y)3(x+y)4的展開式中x3y4項的系數(shù)是(  )
A.3B.12C.17D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,右準線l與兩條漸近線交于P、Q兩點,如果△PQF是等邊三角形,則雙曲線的離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一個空間幾何體的三視圖如圖所示,那么這個空間幾何體是( 。
A.B.圓錐C.正方體D.圓柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示,正方體ABCD-A1B1C1D1的棱長為4,P為BC的中點,Q為線段CC1上的動點,過點A、P、Q的平面截正方體所得的截面即為S.
①當(dāng)CQ=2時,被S截得的較小幾何體為棱臺;
②當(dāng)3<CQ<4時,S為五邊形;
③當(dāng)CQ=3時,S與C1D1的交點R滿足D1R=1;
④當(dāng)CQ=4時,S截正方體兩部分的體積之比為1:1.
則以上命題正確的是①②④  (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.定義在R上的函數(shù)f(x)滿足f(x+2)=f(x)-2,當(dāng)x∈(0,2]時,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-6,x∈(0,1]}\\{-{2}^{x-1}-5,x∈(1,2]}\end{array}\right.$,若x∈(-6,-4]時,關(guān)于x的方程af(x)-a2+2=0(a>0)有解,則實數(shù)a的取值范圍是0<a≤1.

查看答案和解析>>

同步練習(xí)冊答案