11.已知函數(shù)f(x)=ax2+bx(a,b∈R),且滿足1<f(1)<2,3<f(2)<8,則f(3)的取值范圍是(3,21).

分析 根據(jù)f(1),f(2)的范圍得到:1<a+b<2,3<4a+2b<8,根據(jù)不等式的性質(zhì)求出3a+b的范圍,從而求出f(3)的范圍即可.

解答 解:f(x)=ax2+bx(a,b∈R),
∵1<f(1)<2,3<f(2)<8,
∴1<f(2)-f(1)<7,
令f(3)=mf(1)+nf(2),
即9a+3b=m(a+b)+n(4a+2b),
∴$\left\{\begin{array}{l}m+4n=9\\ m+2n=3\end{array}\right.$,
解得:m=3,n=-3
∴f(3)=3[f(2)-f(1)],
∴3<f(3)<21,
故答案為:(3,21).

點(diǎn)評 本題考查了二次函數(shù)的性質(zhì),考查不等式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將圓C:x2+y2=4上點(diǎn)的橫坐標(biāo)的單位長度保持不變,縱坐標(biāo)的單位長度縮短為原來的$\frac{1}{2}$.
(1)求壓縮后的曲線方程;
(2)圓C上點(diǎn)P($\sqrt{2}$,$\sqrt{2}$)的切線,經(jīng)過壓縮后與壓縮后曲線有何關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,點(diǎn)(1,$\frac{\sqrt{2}}{2}$)在C上.(1)求C的方程;
(2)過點(diǎn)M(0,-$\frac{1}{3}$)的動(dòng)直線L交橢圓C于A,B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)頂點(diǎn)T,使得無論如何L轉(zhuǎn)動(dòng),以AB為直徑的圓恒過定點(diǎn)T?若存在,求出T點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)M是△ABC內(nèi)一點(diǎn),且$\overrightarrow{AB}$•$\overrightarrow{AC}$=4$\sqrt{3}$,∠BAC=30°,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(1,n,p),則$\frac{1}{n}$+$\frac{4}{p}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若f(x)=x3-$\frac{1}{2}$x2-2x+c對x∈[-1,2],不等式f(x)<c2,恒成立,則c的取值范圍是c<-1或c>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線的一個(gè)頂點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且雙曲線的離心率等于$\sqrt{5}$,則該雙曲線的方程為( 。
A.$\frac{x^2}{4}$-y2=1B.x2-$\frac{y^2}{4}$=1C.$\frac{x^2}{5}$-$\frac{y^2}{4}$=1D.5x2-$\frac{{5{y^2}}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=|ln|x-1||+x2與g(x)=2x有n個(gè)交點(diǎn),它們的橫坐標(biāo)之和為(  )
A.0B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系xOy,已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,且過點(diǎn)($\sqrt{3}$,$\frac{1}{2}$),原點(diǎn)O到經(jīng)過兩點(diǎn)(c,0),(0,b)的直線的距離為$\frac{1}{2}$c.
(Ⅰ)求橢圓E的方程;
(Ⅱ)A為橢圓E上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足$\overrightarrow{OP}$=λ$\overrightarrow{AO}$,過點(diǎn)P的直線交橢圓E于B、C兩點(diǎn),且$\overrightarrow{BP}$=$μ\overrightarrow{BC}$,若直線OA,OB的斜率之積為-$\frac{1}{4}$,求證:λ2=2μ-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.將一枚硬幣連擲三次,出現(xiàn)“三個(gè)正面”的概率為$\frac{1}{8}$;出現(xiàn)“一個(gè)正面,兩個(gè)反面”的概率為$\frac{3}{8}$.

查看答案和解析>>

同步練習(xí)冊答案