【題目】已知三棱錐中,側面底面,,則三棱錐外接球的體積為( )

A. B. C. D.

【答案】B

【解析】分析:由幾何關系首先求得外接球的半徑,然后利用球的體積公式求解體積的大小即可.

詳解:如圖取BC的中點為D,

顯然三棱錐P-ABC的外接球的球心O一定在過點D,且垂直于面ABC的垂線DO.

OD=h,在PAC中,AC=4,PA=,PC=,

利用余弦定理得cosPCA=.

PAC中過PPHAC,所以PH⊥平面ABC,易求PH=CH=1.

CDH中,CH=1,CD=,,

DODH為鄰邊作矩形DOGH,

因為三棱錐P-ABC的外接球的球心為O,

所以OP=OBOP2=(h+1)2+5,OB2=()2+h2,

那么,解得OD=h=1,

可得外接球的半徑OB=3,.

本題選擇B選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】(2017高考新課標Ⅲ,19)如圖,四面體ABCD中,ABC是正三角形,ACD是直角三角形,∠ABD=CBD,AB=BD.

(1)證明:平面ACD⊥平面ABC

(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角DAEC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 已知函數(shù)f(x)=|xa|+|x-2|.

(1)a=-3時,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+1)-loga(1-x),a>0a≠1.

(1)f(x)的定義域;

(2)判斷f(x)的奇偶性并予以證明;

(3)a>1,求使f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)當時,求函數(shù)的極值;

(2)當時,討論函數(shù)的單調性;

(3)若對任意及任意,恒有成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】3名男生和3名女生共6人站成一排,若男生甲不站兩端,且不與男生乙相鄰,3名女生有且只有2名女生相鄰,則不同排法的種數(shù)是_____.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】業(yè)界稱中國芯迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產品,研發(fā)啟動時投入資金為(為常數(shù))元,之后每年會投入一筆研發(fā)資金,年后總投入資金記為,經計算發(fā)現(xiàn)當時,近似地滿足,其中為常數(shù),.已知年后總投入資金為研發(fā)啟動時投入資金的倍.問

1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的倍;

2)研發(fā)啟動后第幾年的投入資金的最多.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“雙十一”已經成為網民們的網購狂歡節(jié),某電子商務平臺對某市的網民在今年“雙十一”的網購情況進行摸底調查,用隨機抽樣的方法抽取了100人,其消費金額 (百元)的頻率分布直方圖如圖所示:

(1)求網民消費金額的平均值和中位數(shù);

(2)把下表中空格里的數(shù)填上,能否有的把握認為網購消費與性別有關;

合計

30

合計

45

附表:

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點,且兩個焦點的坐標分別為 .

(1)求的方程;

(2)若, , 上的三個不同的點, 為坐標原點,且,求證:四邊形的面積為定值.

查看答案和解析>>

同步練習冊答案