4.等比數(shù)列{an}各項(xiàng)均為正數(shù)且a5a6=8,則log2a1+log2a2+…+log2a10=(  )
A.15B.10C.12D.4+log25

分析 利用等比數(shù)列的性質(zhì)可得:等比數(shù)列{an}各項(xiàng)均為正數(shù)且a5a6=8=a1a10=…=8,再利用對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:∵等比數(shù)列{an}各項(xiàng)均為正數(shù),
∴a5a6=8=a1a10=…=8,
則log2a1+log2a2+…+log2a10=log2(a1a2•…•a10)=$lo{g}_{2}({a}_{5}{a}_{6})^{5}$=$lo{g}_{2}{8}^{5}$=15.
故選:A.

點(diǎn)評(píng) 本題考查了等比數(shù)列的性質(zhì)、對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓C的右焦點(diǎn)F(1,0),過(guò)F的直線l與橢圓C交于A,B兩點(diǎn),當(dāng)l垂直于x軸時(shí),|AB|=3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在x軸上是否存在點(diǎn)T,使得$\overrightarrow{TA}$•$\overrightarrow{TB}$為定值?若存在,求出點(diǎn)T坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥3\\ x-y≥-1\\ 2x-y≤3\end{array}\right.$,則$\frac{{{x^2}+{y^2}}}{xy}$的取值范圍是[2,$\frac{5}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示,則要得到y(tǒng)=f(x)的圖象,只需要把y=Asinωx的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{1}{6}$個(gè)單位D.向右平移$\frac{1}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列$\frac{1}{1×2},-\frac{1}{2×3},\frac{1}{3×4},-\frac{1}{4×5},…$的通項(xiàng)公式an=(-1)n+1•$\frac{1}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)S一枚骰子,觀察擲出的點(diǎn)數(shù),則事件“擲出奇數(shù)點(diǎn)或3的倍數(shù)”的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.計(jì)算:
(1)lg14-2lg$\frac{7}{3}$+lg7-lg18
(2)(2$\frac{7}{9}$)0.5+(0.1)-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知A(-2,0)、B(2,0),P(2,4),動(dòng)點(diǎn)滿足$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,M的軌跡為曲線C.
(1)求動(dòng)點(diǎn)M的軌跡方程;
(2)過(guò)P作曲線C的切線,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若不等式x2+a|x|+1≥0對(duì)x∈[-$\frac{1}{2}$,$\frac{1}{2}}$]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.[-2,+∞)B.[-2,2]C.(-∞,-2]D.[-$\frac{5}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案