已知函數(shù)滿足:對(duì)任意,都有成立,且時(shí),
(1)求的值,并證明:當(dāng)時(shí),;
(2)判斷的單調(diào)性并加以證明;
(3)若上遞減,求實(shí)數(shù)的取值范圍.

(1)2;(2)函數(shù)上是增函數(shù);(3)

解析試題分析:(1)用賦值法可求得的值。,則,那么.用賦值法令中的,整理出的關(guān)系式,用表示出,因?yàn)橛?img src="http://thumb.1010pic.com/pic5/tikupic/34/5/10if53.png" style="vertical-align:middle;" />的范圍所以可求出的范圍。(2)由(1)知時(shí),,,時(shí),,所以在R上。在R上任取兩個(gè)實(shí)數(shù)并可設(shè),根據(jù)已知可用配湊法令在代入上式找出的關(guān)系。在比較的大小時(shí),在本題中采用作商法與1比較大小。(3)由(2)知函數(shù)上是增函數(shù)。當(dāng)時(shí),函數(shù)上也是增函數(shù),不合題意故舍。當(dāng)時(shí)上單調(diào)遞減,此時(shí)只需的最大值小于等于k即可。
試題解析:(1)令,則,
,解得
,令,則,
與已知條件矛盾.
所以
設(shè),則,那么.


,從而
(2)函數(shù)上是增函數(shù).
設(shè),由(1)可知對(duì)任意






,即
函數(shù)上是增函數(shù)。
(3)由(2)知函數(shù)上是增函數(shù).
函數(shù)上也是增函數(shù),
若函數(shù)上遞減,
時(shí),,
時(shí),
時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,其中是常數(shù).
(1)若是奇函數(shù),求的值;
(2)求證:的圖像上不存在兩點(diǎn)A、B,使得直線AB平行于軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),其中.
(I) 若,求的值;    (II) 若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱,且
(1)求函數(shù)的解析式;
(2)解不等式;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若函數(shù)是定義在R上的偶函數(shù),求a的值;
(Ⅱ)若不等式對(duì)任意,恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)為奇函數(shù).
(1)求常數(shù)的值;
(2)判斷函數(shù)的單調(diào)性,并說(shuō)明理由;
(3)函數(shù)的圖象由函數(shù)的圖象先向右平移2個(gè)單位,再向上平移2個(gè)單位得到,寫出的一個(gè)對(duì)稱中心,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)探究函數(shù)f(x)=ax+(a、b是正常數(shù))在區(qū)間上的單調(diào)性(只需寫出結(jié)論,不要求證明).并利用所得結(jié)論,求使方程f(x)-log4m=0有解的m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的定義域;
(2)問(wèn)是否存在實(shí)數(shù)、,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/64/9/1cd4s4.png" style="vertical-align:middle;" />,且 若存在,求出的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ca/2/sl6je1.png" style="vertical-align:middle;" />,
(1)求
(2)若,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案