8.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.18πB.36πC.72πD.144π

分析 由三視圖可知該該幾何體為半徑為6的球體的$\frac{1}{8}$.利用球體體積公式計算即可.

解答 解:由三視圖可知該幾何體為半徑為6的球體的$\frac{1}{8}$,
∴幾何體的體積為V=$\frac{1}{8}×\frac{4}{3}×π×{6}^{3}$=36π.
故選:B.

點(diǎn)評 本題考查三視圖求幾何體的體積,考查計算能力,空間想象能力,三視圖復(fù)原幾何體是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x,y∈R,滿足x2+2xy+4y2=6,則z=x2+4y2的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.等差數(shù)列{an}中,已知a7=-2,a20=-28,
(1)求數(shù)列{an}的通項公式;
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線m:2x-y-3=0與直線n:x+y-3=0的交點(diǎn)為P.
(1)若直線l過點(diǎn)P,且點(diǎn)A(1,3)和點(diǎn)B(3,2)到直線l的距離相等,求直線l的方程;
(2)若直線l1過點(diǎn)P且與x,y正半軸交于A、B兩點(diǎn),△ABO的面積為4,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)在(-∞,-1)上單調(diào)遞增
B.函數(shù)f(x)在(-∞,-1)上單調(diào)遞減
C.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個公共點(diǎn)
D.若b=-6,則函數(shù)f(x)的圖象在點(diǎn)(-2,f(-2))處的切線方程為y=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{(-1)}^n}sin\frac{πx}{2}+2n,\;x∈[{2n,2n+1})}\\{{{(-1)}^{n+1}}sin\frac{πx}{2}+2n+2,\;x∈[{2n+1,2n+2})}\end{array}}\right.$(n∈N),若數(shù)列{am}滿足${a_m}=f(m)\;(m∈{N^*})$,數(shù)列{am}的前m項和為Sm,則S105-S96=909.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等差數(shù)列{an}的前n項和為Sn,且a1>0,a3+a10>0,a6a7<0,則滿足Sn>0的最大自然數(shù)n的值為(  )
A.6B.7C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}滿足a1=0,an+1=$\frac{{{a_n}-\sqrt{3}}}{{\sqrt{3}{a_n}+1}},n∈{N^*},則{a_{2016}}$=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題正確的是( 。
A.向量$\overrightarrow{AB}$與$\overrightarrow{BA}$是相等向量B.共線的單位向量是相等向量
C.零向量與任一向量共線D.兩平行向量所在直線平行

查看答案和解析>>

同步練習(xí)冊答案