A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)已知的約束條,畫出滿足約束條件的可行域,將式子進(jìn)行變形,再分析目標(biāo)函數(shù)的幾何意義,結(jié)合圖象即可給出目標(biāo)函數(shù)的取值范圍.
解答 解:約束條件對應(yīng)的平面區(qū)域如下圖示:
設(shè)k=$\frac{y}{x}$,表示可行域內(nèi)的點(x,y)與點(0,0)連線的斜率
由圖可知k的最大值為直線2x-y=0的斜率2,
故$\frac{x+y}{x}$=1+k的最大值是3,
故選:C.
點評 本題主要考查線性規(guī)劃的應(yīng)用,在解題時,關(guān)鍵是正確地畫出平面區(qū)域,分析表達(dá)式的幾何意義,然后結(jié)合數(shù)形結(jié)合的思想,分析圖形,找出滿足條件的點的坐標(biāo),即可求出答案.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{π}{6}$,$\frac{π}{3}$) | B. | (-$\frac{π}{3}$,$\frac{π}{6}$) | C. | ($\frac{π}{6}$,$\frac{2π}{3}$) | D. | ($\frac{π}{3}$,$\frac{5π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2] | B. | [-2,-1] | C. | [-2,-$\frac{1}{2}$) | D. | [-2,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{5}$ | C. | 5 | D. | $\frac{{\sqrt{50}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | [-1,1] | C. | [-1,1]∪[2,+∞) | D. | (-2,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com