12.已知向量$\overrightarrow a=({1-t\;\;,\;\;2t-1\;\;,\;\;0})$,$\overrightarrow b=({2\;\;,\;\;t\;\;,\;\;t})$(t∈R),則$|{\overrightarrow b-\overrightarrow a}|$的最小值是(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

分析 根據(jù)向量的坐標(biāo)運(yùn)算,計(jì)算${(\overrightarrow-\overrightarrow{a})}^{2}$的最小值,從而求出$|{\overrightarrow b-\overrightarrow a}|$的最小值.

解答 解:向量$\overrightarrow a=({1-t\;\;,\;\;2t-1\;\;,\;\;0})$,$\overrightarrow b=({2\;\;,\;\;t\;\;,\;\;t})$(t∈R),
則$\overrightarrow$-$\overrightarrow{a}$=(1+t,1-t,t),
∴${(\overrightarrow-\overrightarrow{a})}^{2}$=(1+t)2+(1-t)2+t2=3t2+2≥2,
當(dāng)且僅當(dāng)t=0時(shí)${(\overrightarrow-\overrightarrow{a})}^{2}$取得最小值2,
∴$|{\overrightarrow b-\overrightarrow a}|$的最小值是$\sqrt{2}$.
故選:D.

點(diǎn)評(píng) 本題考查了空間向量的坐標(biāo)運(yùn)算與模長公式的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.化簡(jiǎn):已知α是第四象限角,則$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中,a1=1,且3an+1=1-an
(Ⅰ)證明:數(shù)列{an$-\frac{1}{4}$}是等比數(shù)列
(Ⅱ)記bn=(-1)n+1n(an-$\frac{1}{4}$),求數(shù)列{bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.元代數(shù)學(xué)家朱世杰所著《四元玉鑒》一書,是中國古代數(shù)學(xué)的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛疊藏》第一問是:“今有三角垛果子一所,值錢一貫三百二十文,只云從上一個(gè)值錢二文,次下層層每個(gè)累貫一文,問底子每面幾何?”據(jù)此,繪制如圖所示程序框圖,求得底面每邊的果子數(shù)n為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)f(x)是定義在R上周期為2的函數(shù),且對(duì)任意的實(shí)數(shù)x,恒有f(x)-f(-x)=0,當(dāng)x∈[0,1]時(shí),f(x)=-$\sqrt{1-{x^2}}$,則函數(shù)g(x)=f(x)-ex+1在區(qū)間[-2017,2017]上零點(diǎn)的個(gè)數(shù)為(  )
A.2016B.2017C.4032D.4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某幾何體的三視圖如圖所示,則該幾何體的體積為54π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1,F(xiàn)2,且與直線x+y-1=0相交于A,B兩點(diǎn).
(1)若橢圓C1的兩焦點(diǎn)分別為雙曲線${C_2}:{x^2}-\frac{y^2}{2}=1$的頂點(diǎn),且以橢圓上任一點(diǎn)P和左右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的△PF1F2的周長為$2\sqrt{3}+2$,求橢圓C1的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,求弦AB的長;
(3)當(dāng)橢圓的離心率e滿足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,且以AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在一次對(duì)晝夜溫差大小與種子發(fā)芽數(shù)之間的研究中,研究人員獲得了一組樣本數(shù)據(jù):
溫差x(℃)131211108
發(fā)芽數(shù)y(顆)3026252316
(1)請(qǐng)根據(jù)上述數(shù)據(jù),選取其中的前3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸直線方程是可靠的,請(qǐng)問(1)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在三棱錐A-BCD中,△ABC與△BCD都是邊長為6的正三角形,平面ABC⊥平面BCD,則該三棱錐的外接球的面積為60π.

查看答案和解析>>

同步練習(xí)冊(cè)答案