8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB∥CD,AB⊥BC,PA=AB=BC=$\frac{1}{2}$CD.
(Ⅰ)求證:面PAD⊥面PAC;
(Ⅱ)若AB=1,求三棱錐D-PBC的高.

分析 (Ⅰ)設PA=AB=BC=$\frac{1}{2}$CD=a,通過求解直角三角形可得AD2+AC2=CD2,得到AC⊥AD.由PA⊥底面ABCD,得PA⊥AC,再由線面垂直的判定可得AC⊥平面PAD,從而得到平面PAD⊥平面PAC;
(Ⅱ)設三棱錐D-PBC的高為h,利用VD-PBC=VP-DBC求得三棱錐D-PBC的高h.

解答 (Ⅰ)證明:設PA=AB=BC=$\frac{1}{2}$CD=a,在Rt△ABC中,AC=$\sqrt{2}$a,
在直角梯形ABCD中,求得AD=$\sqrt{2}$a,
在△DAC中,有AD2+AC2=CD2,∴AC⊥AD.
又∵PA⊥底面ABCD,∴PA⊥AC,
又PA∩AD=A,∴AC⊥平面PAD,
∵AC?平面PAC,∴平面PAD⊥平面PAC;
(Ⅱ)解:設三棱錐D-PBC的高為h,由題知PA=AB=BC=1,DC=2,PB=$\sqrt{2}$.
∵BC⊥AB,PA⊥BC,PA∩AB=A,∴BC⊥平面PAB,則BC⊥PB.
∵VD-PBC=VP-DBC
∴$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×1×h$=$\frac{1}{3}×\frac{1}{2}×2×1×1$,解得h=$\sqrt{2}$,
∴三棱錐D-PBC的高為$\sqrt{2}$.

點評 本題考查線面垂直的判定,考查面面垂直的判定,訓練了利用等積法求多面體的體積,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在數(shù)列{an}中,a1=2,2(an+1-1)(an-1)+an+1-an=0(n∈N*),若an<$\frac{201}{199}$,則n的最小值為(  )
A.50B.51C.100D.101

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖是一幾何體的直觀圖、主視圖和俯視圖,則該幾何體的側視圖是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{x+a}{{x}^{2}+b}$的圖象在點M(-1,f(-1))處的切線方程為x-4y+1=0.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某學校為了增強學生對消防安全知識的了解,舉行了一次消防安全知識競賽.其中一道題是連線題,要求將3種不同的消防工具與它們的用途一對一連線,規(guī)定:每連對一條得2分,連錯一條扣1分,參賽者必須把消防工具與用途一對一全部連起來.
(Ⅰ)設三種消防工具分別為A,B,C,其用途分別為a,b,c,若把 連線方式表示為$(\begin{array}{l}{A^{\;}}{B^{\;}}C\\{b^{\;}}{c^{\;}}a\end{array})$,規(guī)定第一行A,B,C的順序固定不變,請列出所有連線的情況;
(Ⅱ)求某參賽者得分為0分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosa\\ y=2+tsina\end{array}\right.$(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(Ⅰ)求a=$\frac{π}{4}$時的普通方程和圓C普通的方程;
(Ⅱ)設圓C與直線l交于點A,B.若點P的坐標為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某銀行推出95577服務電話,部分業(yè)務流程如圖,如果我要利用這個服務交納電視費,請問按照這個流程圖,我撥通95577電話后如何操作( 。
A.按2,按1,按3B.按5,按1,按3C.按0,按2,按1,按3D.按5,按1,按2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設二項式(x-$\frac{a}{x}$)6的展開式中x2項的系數(shù)為A,常數(shù)項為B,若B=4A,則非零實數(shù)a的值為-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.觀察下列式子:1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,…,根據(jù)以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{201{6}^{2}}$<$\frac{4031}{2016}$.

查看答案和解析>>

同步練習冊答案