2.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F,短軸長(zhǎng)為2,點(diǎn)M為橢圓E上一個(gè)動(dòng)點(diǎn),且|MF|的最大值為$\sqrt{2}+1$.
(1)求橢圓E的方程;
(2)設(shè)不在坐標(biāo)軸上的點(diǎn)M的坐標(biāo)為(x0,y0),點(diǎn)A,B為橢圓E上異于點(diǎn)M的不同兩點(diǎn),且直線x=x0平分∠AMB,試用x0,y0表示直線AB的斜率.

分析 (1)2b=2,b=1,由$\left\{\begin{array}{l}{a^2}-{c^2}=1\\ a+c=\sqrt{2}+1\end{array}\right.$,聯(lián)立解出即可得出.
(2)設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),由題意可知直線MA的斜率存在,設(shè)直線MA的方程為y-y0=k(x-x0),與橢圓方程聯(lián)立化為:$(2{k^2}+1){x^2}+4k({y_0}-k{x_0})x+2({y_0}-k{x_0}{)^2}-2=0$,利用根與系數(shù)的關(guān)系解得x1.由于直線x=x0平分∠AMB,可得直線MA,MB的傾斜角互補(bǔ),斜率互為相反數(shù).同理可得x2.利用斜率計(jì)算公式、根與系數(shù)的關(guān)系代入即可得出.

解答 解:(1)2b=2,b=1,
由$\left\{\begin{array}{l}{a^2}-{c^2}=1\\ a+c=\sqrt{2}+1\end{array}\right.$得$\left\{\begin{array}{l}a=\sqrt{2}\\ c=1\end{array}\right.$,
∴橢圓E的方程為$\frac{x^2}{2}+{y^2}=1$.
(2)設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),由題意可知直線MA的斜率存在,設(shè)直線MA的方程為y-y0=k(x-x0),
由$\left\{\begin{array}{l}y-{y_0}=k(x-{x_0})\\{x^2}+2{y^2}=2\end{array}\right.$得${x^2}+2[kx+({y_0}-k{x_0}){]^2}=2$,化為:$(2{k^2}+1){x^2}+4k({y_0}-k{x_0})x+2({y_0}-k{x_0}{)^2}-2=0$,
∴${x_0}•{x_1}=\frac{{2{{({y_0}-k{x_0})}^2}-2}}{{2{k^2}+1}}$,${x_1}=\frac{{2{{({y_0}-k{x_0})}^2}-2}}{{(2{k^2}+1){x_0}}}$,
∵直線x=x0平分∠AMB,∴直線MA,MB的傾斜角互補(bǔ),斜率互為相反數(shù).
同理${x_2}=\frac{{2{{({y_0}+k{x_0})}^2}-2}}{{(2{k^2}+1){x_0}}}$,
∴${k_{AB}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{k{x_1}+{y_0}-k{x_0}-(-k{x_2}+{y_0}+k{x_0})}}{{{x_1}-{x_2}}}$=$\frac{{k({x_1}+{x_2})-2k{x_0}}}{{{x_1}-{x_2}}}=\frac{{k•\frac{{2(2y_0^2+2{k^2}x_0^2)-4}}{{(2{k^2}+1){x_0}}}-2k{x_0}}}{{\frac{{2•2{y_0}•(-2k{x_0})}}{{(2{k^2}+1){x_0}}}}}$=$\frac{{k[2(2y_0^2+2{k^2}x_0^2)-4]-2kx_0^2(2{k^2}+1)}}{{-8k{x_0}{y_0}}}$=$\frac{{2y_0^2+2{k^2}x_0^2-2-2{k^2}x_0^2-x_0^2}}{{-4{x_0}{y_0}}}=\frac{2y_0^2-2-x_0^2}{{-4{x_0}{y_0}}}$=$\frac{-2x_0^2}{{-4{x_0}{y_0}}}=\frac{x_0}{{2{y_0}}}$.

點(diǎn)評(píng) 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、一元二次方程的根與系數(shù)的關(guān)系、斜率計(jì)算公式、傾斜角與斜率的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)數(shù)列{an}是首項(xiàng)為1,公比為-2的等比數(shù)列,則a1+|a2|+|a3|+a4=(  )
A.-5B.5C.11D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知|$\overrightarrow{a}$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{π}{3}$,($\overrightarrow{a}$+2$\overrightarrow$)$\overrightarrow{a}$=3,則|$\overrightarrow$|的值是(  )
A.1B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}}\right.(t$為參數(shù),0≤α<π),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,已知曲線C2的極坐標(biāo)方程為ρ=4cosθ,射線$θ=ϕ,θ=ϕ+\frac{π}{4},θ=ϕ-\frac{π}{4}$與曲線C2相交,交點(diǎn)分別為A,B,C(A,B,C均不與O重合).
(1)求證:$|{OB}|+|{OC}|=\sqrt{2}|{OA}|$;
(2)當(dāng)$ϕ=\frac{π}{12}$時(shí),B,C兩點(diǎn)在曲線C1上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若某空間幾何體的三視圖如圖所示,則該幾何體是( 。
A.三棱柱B.三棱錐C.四棱錐D.四棱臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等差數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若$\frac{S_n}{T_n}=\frac{38n+14}{2n+1}({n∈{N_+}})$,則$\frac{a_6}{b_7}$=( 。
A.16B.$\frac{242}{15}$C.$\frac{432}{23}$D.$\frac{494}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.F是拋物線x2=2y的焦點(diǎn),A、B是拋物線上的兩點(diǎn),|AF|+|BF|=6,則線段AB的中點(diǎn)到x軸的距離為2.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1:x2+(y-$\frac{1}{4}$)2=1(y≥$\frac{1}{4}$),C2:x2=8y-1(|x|≥1),動(dòng)直線l與C2相交于A,B兩點(diǎn),曲線C2在A,B處的切線相交于點(diǎn)M.
(1)當(dāng)MA⊥MB時(shí),求證:直線l恒過定點(diǎn),并求出定點(diǎn)坐標(biāo);
(2)若直線l與C1相切于點(diǎn)P,試問:在y軸上是否存在兩個(gè)定點(diǎn)T1,T2,當(dāng)直線MT1,MT2斜率存在時(shí),兩直線的斜率之積恒為定值?若存在求出滿足條件的點(diǎn)T1,T2的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.P是二面角α-AB-β棱上的一點(diǎn),分別在α,β平面上引射線PM,PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α-AB-β的大小為( 。
A.60°B.70°C.80°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案