19.若x>0,y>0,且x(x+y)=5x+y,則2x+y的最小值為9.

分析 x>0,y>0,且x(x+y)=5x+y,可得y=$\frac{{x}^{2}-5x}{1-x}$>0,解得x范圍.則2x+y=2x+$\frac{{x}^{2}-5x}{1-x}$=x-1+$\frac{4}{x-1}$+5,利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,y>0,且x(x+y)=5x+y,
∴y=$\frac{{x}^{2}-5x}{1-x}$>0,解得1<x<5.
則2x+y=2x+$\frac{{x}^{2}-5x}{1-x}$=x-1+$\frac{4}{x-1}$+5≥2$\sqrt{4}$+5=9,當且僅當x=3時取等號.
∴2x+y的最小值為9.
故答案為:9.

點評 本題考查了基本不等式的性質(zhì)、方程的解法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{|{x+1}|,x≤0}\\{|{{{log}_3}x}|,x>0}\end{array}}$,若方程f(x)-a=0的四個根分別為x1,x2,x3,x4,且x1<x2<x3<x4,則$\frac{1}{{{x_3}({{x_1}+{x_2}})}}$+$x_3^2{x_4}$的取值范圍是( 。
A.[-$\frac{7}{6}$,$\frac{1}{2}}$)B.(-$\frac{7}{6}$,$\frac{1}{2}}$)C.[-1,$\frac{7}{3}}$)D.(-1,$\frac{7}{3}}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.擲一枚均勻的硬幣,如果連續(xù)拋擲1000次,那么第999次出現(xiàn)正面向上的概率是( 。
A.$\frac{1}{1000}$B.$\frac{1}{999}$C.$\frac{1}{2}$D.$\frac{999}{1000}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C對邊分別為a,b,c.設向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),$\overrightarrow{p}$=(b-2,a-2).
(Ⅰ) 若$\overrightarrow{m}$∥$\overrightarrow{n}$,求證:△ABC為等腰三角形;
(Ⅱ) 已知c=2,C=$\frac{π}{3}$,若$\overrightarrow{m}$⊥$\overrightarrow{p}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知集合M={-1,0,1},N={0,1,2},則M∪N={-1,0,1,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當x=$\frac{2π}{3}$時,函數(shù)f(x)取得最小值,則下列結(jié)論正確的是( 。
A.f($\frac{π}{2}$)<f($\frac{π}{6}$)<f(0)B.f(0)<f($\frac{π}{2}$)<f($\frac{π}{6}$)C.f($\frac{π}{6}$)<f(0)<f($\frac{π}{2}$)D.f($\frac{π}{2}$)<f(0)<f($\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某學校有36個班,每個班有56名同學都是從1到56編的號碼.為了交流學習經(jīng)驗,要求每班號碼為14的同學留下進行交流,這里運用的是       ( 。
A.分層抽樣B.抽簽抽樣C.隨機抽樣D.系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.五個數(shù)1,2,5,a,b的均值為3,方差為2,則這五個數(shù)的中位數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)是定義在R上的偶函數(shù),其圖象關(guān)于直線x=1對稱,若f(1)=2016,則f(2015)=2016.

查看答案和解析>>

同步練習冊答案