分析 (1)由條件可得an+2-an+1=$\frac{1}{2}$(an+1-an),即為bn+1=$\frac{1}{2}$bn,運用等比數(shù)列的定義即可得證;
(2)運用等比數(shù)列的通項公式可得an+1-an=($\frac{1}{2}$)n-1,再由累加法和等比數(shù)列的求和公式,計算即可得到所求;
(3)運用數(shù)列的求和方法:分組求和,結(jié)合等比數(shù)列的求和公式化簡整理即可得到所求和.
解答 解:(1)證明:an+2=$\frac{3}{2}$an+1-$\frac{1}{2}$an,可得
an+2-an+1=$\frac{1}{2}$(an+1-an),
即為bn+1=$\frac{1}{2}$bn,
則{bn}為首項為a2-a1=1,公比為$\frac{1}{2}$的等比數(shù)列;
(2)由(1)可得bn=($\frac{1}{2}$)n-1,
即為an+1-an=($\frac{1}{2}$)n-1,
由a2-a1=1,a3-a2=$\frac{1}{2}$,…,an-an-1=($\frac{1}{2}$)n-2,
累加可得an=1+1+$\frac{1}{2}$+…+($\frac{1}{2}$)n-2
=1+$\frac{1-(\frac{1}{2})^{n-1}}{1-\frac{1}{2}}$=3-($\frac{1}{2}$)n-2;
(3)前n項和Sn=3n-[2+1+$\frac{1}{2}$+…+($\frac{1}{2}$)n-2]
=3n-$\frac{2(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=3n-4+($\frac{1}{2}$)n-2.
點評 本題考查等比數(shù)列的通項公式和求和公式的運用,考查構(gòu)造數(shù)列,以及累加法求通項的方法和分組求和方法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com