已知某幾何體的三視圖如圖所示,若該幾何體的體積為,則正視圖中的值為( )
A. B. C. D.
科目:高中數(shù)學 來源:2013-2014學年湖南省益陽市高三模擬考試理科數(shù)學試卷(解析版) 題型:選擇題
函數(shù)的定義域為,且其圖象上任一點滿足方程,給出以下四個命題:
①函數(shù)是偶函數(shù);
②函數(shù)不可能是奇函數(shù);
③,;
④,.其中真命題的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖南省懷化市高三第二次模擬考試理科數(shù)學試卷(解析版) 題型:填空題
是⊙的直徑,是⊙切線,為切點,⊙上有兩點、,直線交的延長線于點,,,則⊙的半徑是_______.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖南省懷化市高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:解答題
某廣告公司設計一個凸八邊形的商標,它的中間是一個正方形,外面是四個腰長為,頂角為的等腰三角形.
(1)若角時,求該八邊形的面積;
(2)寫出的取值范圍,當取何值時該八邊形的面積最大,并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖南省懷化市高三第二次模擬考試文科數(shù)學試卷(解析版) 題型:選擇題
一個算法的程序框圖如圖所示,其輸出結果是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省黃岡市高三5月適應性考試理科數(shù)學試卷(解析版) 題型:解答題
已知P是圓M:x2+y2+4x+4-4m2=0(m>0且m≠2)上任意一點,點N的坐標為(2,0),線段NP的垂直平分線交直線MP于點Q,當點P在圓M上運動時,點Q的軌跡為C.
(1)求出軌跡C的方程,并討論曲線C的形狀;
(2)當m=時,在x軸上是否存在一定點E,使得對曲線C的任意一條過E的弦AB,為定值?若存在,求出定點和定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省黃岡市高三5月適應性考試理科數(shù)學試卷(解析版) 題型:填空題
1955年,印度數(shù)學家卡普耶卡(D.R.Kaprekar)研究了對四位自然數(shù)的一種交換:任給出四位數(shù),用的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再減去它的反序數(shù)n(即將的四個數(shù)字由小到大排列,規(guī)定反序后若左邊數(shù)字有0,則將0去掉運算,比如0001,計算時按1計算),得出數(shù),然后繼續(xù)對重復上述變換,得數(shù),…,如此進行下去,卡普耶卡發(fā)現(xiàn),無論是多大的四位數(shù),只要四個數(shù)字不全相同,最多進行k次上述變換,就會出現(xiàn)變換前后相同的四位數(shù)t(這個數(shù)稱為Kaprekar變換的核).通過研究10進制四位數(shù)2014可得Kaprekar變換的核為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省黃岡市高三5月適應性考試文科數(shù)學試卷(解析版) 題型:解答題
已知數(shù)列的首項,且對任意都有(其中為常數(shù)).
(1)若數(shù)列為等差數(shù)列,且,求的通項公式.
(2)若數(shù)列是等比數(shù)列,且,從數(shù)列中任意取出相鄰的三項,均能按某種順序排成等差數(shù)列,求的前項和成立的的取值的集合.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年湖北省黃岡市高三第二學期三月月考文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù).
(1)當時,求的單調區(qū)間;
(2)若不等式有解,求實數(shù)m的取值菹圍;
(3)證明:當a=0時,.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com