14.求下列極限:
(1)$\underset{lim}{x→1}$$\frac{{x}^{2}-1}{x-1}$;
(2)$\underset{lim}{x→-2}$$\frac{x+2}{{x}^{2}+x-2}$;
(3)$\underset{lim}{x→-1}$$\frac{{x}^{2}+x}{{x}^{2}-2x-3}$;
(4)$\underset{lim}{x→2}$$\frac{\sqrt{x+2}-1}{x}$.

分析 對于$\frac{0}{0}$的式子求極限問題,一般運(yùn)用洛必達(dá)法則,

解答 解:(1)為$\frac{0}{0}$式,利用洛必達(dá)法則:$\underset{lim}{n→1}\frac{2x}{1}=2$
(2)為$\frac{0}{0}$式,利用洛必達(dá)法則:原式=$\underset{lim}{n→-2}\frac{1}{2x+1}=-\frac{1}{3}$
(3)為$\frac{0}{0}$式,利用洛必達(dá)法則:原式=$\underset{lim}{n→-1}\frac{2x+1}{2x-2}=\frac{1}{4}$
(4)將x=2代入得$\underset{lim}{n→2}=\frac{\sqrt{2+2}-1}{2}=\frac{1}{2}$

點(diǎn)評 本題主要考察,對于$\frac{0}{0}$型的式子求極限問題,一般采用洛必達(dá)法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若sinx-sin($\frac{3π}{2}$-x)=$\sqrt{2}$,則 tan x+tan($\frac{3π}{2}$-x)的值是(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若x,y滿足條件$\left\{\begin{array}{l}{3x-5y+6≥0}\\{2x+3y-15≤0}\\{y≥0}\end{array}\right.$當(dāng)且僅當(dāng)x=y=3時(shí),z=ax+y取最大值,則實(shí)數(shù)a的取值范圍是(-$\frac{3}{5}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.北京市某校組織學(xué)生慘叫英語測試,某班50人的成績的頻率分布直方圖如圖所示,數(shù)據(jù)的分組依次為[20,40),[40,60),[60,80),[80,100),已知前3組的人數(shù)依次構(gòu)成等比數(shù)列,第2組、第4組、第3組的人數(shù)依次構(gòu)成等差數(shù)列,則及格(大于等于60分)的人數(shù)是35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,則輸出的a=( 。
A.-$\frac{1}{4}$B.5C.$\frac{4}{5}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示,在邊長為1的正方形OABC中任取一點(diǎn)M,則點(diǎn)M恰好取自陰影部分的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-2}-2,}&{x≤1}\\{-lo{g}_{2}(x+1),}&{x>1}\end{array}\right.$,且f(a)=-3,則f(6-a)=-$\frac{15}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{bn}是等比數(shù)列,b9是1和3的等差中項(xiàng),則b2b16=( 。
A.16B.8C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.袋中裝有4個(gè)黑球和3個(gè)白球,現(xiàn)在甲、乙兩人從袋中輪流取球,甲先取,乙后取,然后甲再取…取后不放回,每次一人只取1球,直到兩人中有一人取到白球?yàn)橹,每個(gè)球在每一次被取出的機(jī)會是相等的,用ξ表示終止時(shí)所需要的取球次數(shù).
(1)求甲第一次取球就取到白球的概率;
(2)求隨機(jī)變量ξ的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案