【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有( )
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
科目:高中數(shù)學 來源: 題型:
【題目】峰谷電是目前在城市居民當中開展的一種電價類別.它是將一天24小時劃分成兩個時間段,把8:00—22:00共14小時稱為峰段,執(zhí)行峰電價,即電價上調;22:00—次日8:00共10個小時稱為谷段,執(zhí)行谷電價,即電價下調.為了進一步了解民眾對峰谷電價的使用情況,從某市一小區(qū)隨機抽取了50 戶住戶進行夏季用電情況調查,各戶月平均用電量以,,,,,(單位:度)分組的頻率分布直方圖如下圖:
若將小區(qū)月平均用電量不低于700度的住戶稱為“大用戶”,月平均用電量低于700度的住戶稱為“一般用戶”.其中,使用峰谷電價的戶數(shù)如下表:
月平均用電量(度) | ||||||
使用峰谷電價的戶數(shù) | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估計所抽取的 50戶的月均用電量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)()將“一般用戶”和“大用戶”的戶數(shù)填入下面的列聯(lián)表:
一般用戶 | 大用戶 | |
使用峰谷電價的用戶 | ||
不使用峰谷電價的用戶 |
()根據(jù)()中的列聯(lián)表,能否有的把握認為 “用電量的高低”與“使用峰谷電價”有關?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形, , , 平面, , .
()求證: 平面.
()求二面角的余弦值.
()在線段(含端點)上,是否存在一點,使得平面,若存在,求出的值;若不存在,請說明理由.
【答案】()見解析;();()存在,
【解析】試題分析:(1)由題意,證明, ,證明面;(2)建立空間直角坐標系,求平面和平面的法向量,解得余弦值為;(3)得, ,所以, ,所以存在為中點.
試題解析:
()∵, ,∴.
∵,∴,∴, .
∵,且,
、面,∴面.
()知,∴.
∵面, , , 兩兩垂直,以為坐標原點,
以, , 為, , 軸建系.
設,則, , , , ,
∴, .
設的一個法向量為,
∴,取,則.
由于是面的法向量,
則.
∵二面角為銳二面角,∴余弦值為.
()存在點.
設, ,
∴, , ,
∴, .
∵面, .
若面,∴,
∴,
∴,∴,∴存在為中點.
【題型】解答題
【結束】
19
【題目】已知函數(shù).
()當時,求此函數(shù)對應的曲線在處的切線方程.
()求函數(shù)的單調區(qū)間.
()對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
()若是函數(shù)的一個極值點,求實數(shù)的值.
()設,當時,函數(shù)的圖象恒不在直線的上方,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的圖象關于軸對稱,頂點在坐標原點,點在拋物線上.
(1)求拋物線的標準方程;
(2)設直線的方程為,若直線與拋物線交于兩點,且以為直徑的圓過點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個零點,求k的值及該函數(shù)的零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com