8.設(shè)集合M={x|-2<x<-1},集合N={x|($\frac{1}{2}$)x≤4},則M∪N( 。
A.{x|x≥-2}B.{x|x>-1}C.{x|x<-1}D.{x|x≤-2}

分析 解指數(shù)不等式求出N={x|x≥-2},再利用兩個集合的并集的定義求出M∪N.

解答 解:∵集合N={x|($\frac{1}{2}$)x≤4}={x|x≥-2},
∴M∪N={x|-1≤x<2}∪{x|x≥-2}={x|x≥-2},
故選:A.

點評 本題主要考查指數(shù)不等式的解法,兩個集合的并集的定義和求法,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知m∈R,直線l:mx-(m2+1)y-4m=0和圓C:x2+y2-8x+4y+16=0.
(1)求直線l的斜率k的取值范圍;
(2)是否存在直線l和圓C交于M,N兩點,且M,N把圓弧分割成1:3的兩部分?如果存在,求出該直線l的方程,如不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如果實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x+2y-4≥0\\ x-y+2≥0\\ 2x+y-3≤0\end{array}\right.$,則(x+2)2+y2的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=sin(${\frac{π}{2}$x)-1-logax({0<a<1)至少有5個零點,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{7}}{7}$)B.($\frac{\sqrt{7}}{7}$,1)C.($\frac{\sqrt{5}}{5}$,1)D.(0,$\frac{\sqrt{5}}{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.集合A={第一象限角},B={銳角},C={小于90°的角},則下面關(guān)系式中正確的是(  )
A.A=B=CB.A?CC.A∩C=BD.B∪C⊆C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設(shè)α:2≤x≤4,β:m+1≤x≤2m+4,m∈R,如果α是β的充分非必要條件,則m的范圍是[0,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.橢圓$\frac{x^2}{{4{a^{\;}}}}+\frac{y^2}{{{a^2}+1}}=1(a>0)$的焦點在x軸上,則它的離心率的最大值為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{4}$)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓C的中心在原點,焦點在x軸上,離心率為$\frac{\sqrt{3}}{2}$,它的一個頂點恰好是拋物線x2=4$\sqrt{2}y$的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線x=2與橢圓交于P,Q兩點,P點位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動點,滿足直線PA與直線PB的傾斜角互補,證明直線AB的斜率為$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案