3.集合A={第一象限角},B={銳角},C={小于90°的角},則下面關(guān)系式中正確的是( 。
A.A=B=CB.A?CC.A∩C=BD.B∪C⊆C

分析 比較銳角和第一象限角的關(guān)系,比較第一象限角和小于90°的角的關(guān)系,即可得到結(jié)論.

解答 解:∵A={第一象限角},B={銳角},C={小于90°的角},
∴B∪C=C,
故選:D.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握銳角、第一象限角以及小于90°的角的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知命題p:方程x2-mx+1=0有實(shí)數(shù)解,命題q:函數(shù)f(x)=log2(x2-2x+m)的定義域?yàn)镽,若命題p∨q為真,¬p為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.方程($\frac{1}{3}$)x=|log3x|的解的個(gè)數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)z=$\frac{1}{2}$x-y,式中變量x和y滿足條件$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ x≤1\end{array}\right.$,則z的最小值為( 。
A.-3B.$-\frac{5}{2}$C.$-\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知正數(shù)a,b滿足ab=a+b+3,則a+b的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集合M={x|-2<x<-1},集合N={x|($\frac{1}{2}$)x≤4},則M∪N( 。
A.{x|x≥-2}B.{x|x>-1}C.{x|x<-1}D.{x|x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓方程$\frac{x^2}{2}+{y^2}=1$右焦點(diǎn)F、斜率為k的直線l交橢圓于P、Q兩點(diǎn).
(1)求橢圓的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)構(gòu)成的四邊形的面積;
(2)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
(3)在線段OF上是否存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}各項(xiàng)為正,Sn為其前n項(xiàng)和,滿an+1=2Sn-1且a1=1,則an=$\left\{\begin{array}{l}{1,n=1}\\{{3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=log9(9x+1)+kx是偶函數(shù).
(1)求k的值;
(2)設(shè)函數(shù)g(x)=f(x)-$\frac{1}{2}$x-a無零點(diǎn),求a的取值范圍;
(3)設(shè)t(x)=log9(m3x-$\frac{4}{3}$m),若函數(shù)h(x)=f(x)-t(x)有且只有一個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案