A. | (0,$\frac{\sqrt{7}}{7}$) | B. | ($\frac{\sqrt{7}}{7}$,1) | C. | ($\frac{\sqrt{5}}{5}$,1) | D. | (0,$\frac{\sqrt{5}}{5}$) |
分析 若使f(x)=sin(${\frac{π}{2}$x)-1-logax至少有5個零點(diǎn),則只需使函數(shù)h(x)與函數(shù)g(x)至少有5個交點(diǎn);從而利用數(shù)形結(jié)合的思想方法求解即可.
解答 解:若使f(x)=sin(${\frac{π}{2}$x)-1-logax至少有5個零點(diǎn),
則只需使函數(shù)f(x)與函數(shù)g(x)至少有5個交點(diǎn);
作函數(shù)h(x)=-sin(${\frac{π}{2}$x)-1與g(x)=logax的圖象如下,
,
結(jié)合圖象可知,$\left\{\begin{array}{l}{0<a<1}\\{lo{g}_{a}7>-2}\end{array}\right.$,
解得,0<a<$\frac{\sqrt{7}}{7}$,
故選:A.
點(diǎn)評 本題考查了函數(shù)的零點(diǎn)與函數(shù)的圖象的交點(diǎn)的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想方法應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $-\frac{5}{2}$ | C. | $-\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≥-2} | B. | {x|x>-1} | C. | {x|x<-1} | D. | {x|x≤-2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a3>b3 | B. | |a|<|b| | C. | $\frac{1}{a}$>$\frac{1}$ | D. | $\frac{1}{a}$<$\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com