8.(1)設(shè)a,b是兩個不相等的正數(shù),若$\frac{1}{a}$+$\frac{1}$=1,用綜合法證明:a+b>4
(2)已知a>b>c,且a+b+c=0,用分析法證明:$\frac{\sqrt{^{2}-ac}}{a}$<$\sqrt{3}$.

分析 (1)利用綜合法進(jìn)行證明即可.
(2)利用分析法進(jìn)行證明.

解答 解:(1)因?yàn)閍>0,b>0,且a≠b,
所以a+b=(a+b)($\frac{1}{a}+\frac{1}$)=1+1+$\frac{a}+\frac{a}$>2+2$\sqrt{\frac{a}•\frac{a}}$=4.所以a+b>4    (5分)
(2)因?yàn)閍>b>c,且a+b+c=0,所以a>0,c<0,
要證明原不等式成立,只需證明$\sqrt{b2-ac}$<$\sqrt{3}$a,
即證b2-ac<3a2,又b=-(a+c),從而只需證明(a+c)2-ac<3a2,
即證(a-c)(2a+c)>0,
因?yàn)閍-c>0,2a+c=a+c+a=a-b>0,
所以(a-c)(2a+c)>0成立,故原不等式成立. (12分)

點(diǎn)評 本題主要考查不等式的證明,利用分析法和綜合法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求直線x-2y-6=0的斜率和在x軸、y軸上的截距.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,-1<x<0}\\{{x}^{2},0≤x≤5}\end{array}\right.$,則f(x)的定義域是{x|-1<x≤5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算由直線y=$\frac{2}{3}x-\frac{4}{3}$,曲線y=$\sqrt{2x}$以及x軸所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a$=(1,1,1),$\overrightarrow b$=(0,y,1)(0≤y≤1),則cos<$\overrightarrow a$,$\overrightarrow b$>最大值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若f(x)=1-2x,則不等式|f(x+1)+4|≤3的解集為[0,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,若AB=4,AC=5,且cosC=$\frac{4}{5}$,則sinB=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,AB=3,AC=4,M是邊BC的中點(diǎn),則$\overrightarrow{AM}•\overrightarrow{BC}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若定義在R上的函數(shù)f(x),滿足f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(2015)+f(2016)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊答案