13.若f(x)=1-2x,則不等式|f(x+1)+4|≤3的解集為[0,3].

分析 由題意可得 f(x+1)=-2x-1,不等式即|-2x+3|≤3,即-3≤2x-3≤3,由此求得它的解集.

解答 解:∵f(x)=1-2x,∴f(x+1)=1-2(x+1)=-2x-1,
∴不等式|f(x+1)+4|≤3,即|-2x+3|≤3,∴-3≤2x-3≤3,
∴0≤x≤3,
故答案為:[0,3].

點評 本題主要考查絕對值不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)O(0,0),A(5,0),B(0,12).求△OAB的內(nèi)切圓的方程和外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是定義在R上的不恒等于0的偶函數(shù),且對于任意實數(shù)x都有xf(x+1)=(x+1)f(x),則$f(\frac{9}{2})$的值為( 。
A.1B.0C.$\frac{1}{2}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=an+$\frac{1}{(n+1)(n+2)}$(n∈N*),則數(shù)列{an}的通項公式為( 。
A.an=$\frac{1}{n+1}$B.an=$\frac{1}{2}$+$\frac{n-1}{{n}^{2}+n+2}$
C.an=$\frac{n+1}{n+2}$D.an=$\frac{n}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)設(shè)a,b是兩個不相等的正數(shù),若$\frac{1}{a}$+$\frac{1}$=1,用綜合法證明:a+b>4
(2)已知a>b>c,且a+b+c=0,用分析法證明:$\frac{\sqrt{^{2}-ac}}{a}$<$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c.
(1)若a,b,c成等比數(shù)列,求cosB的最小值.
(2)若a,b,c成等比數(shù)列,且角A,B,C成等差數(shù)列,求證△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在銳角△ABC中,a,b,c分別為角A,B,C所對的邊,滿足acosB=b(1+cosA),且△ABC的面積S=2,則(c+a-b)(c+b-a)的取值范圍是(  )
A.(8$\sqrt{2}$-8,8)B.($\frac{8\sqrt{3}}{3}$,8)C.(8$\sqrt{2}$-8,$\frac{8\sqrt{3}}{3}$)D.(8,8$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{OA}$=(cosβ,sinβ),將向量$\overrightarrow{OA}$繞坐標(biāo)原點O逆時針旋轉(zhuǎn)θ角得到向量$\overrightarrow{OB}$(0<θ<90°),則下列說法不正確的是(  )
A.|$\overrightarrow{OA}$|+|$\overrightarrow{OB}$|>|$\overrightarrow{OA}$-$\overrightarrow{OB}$|B.|$\overrightarrow{AB}$|<$\sqrt{2}$C.|$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|D.($\overrightarrow{OA}$+$\overrightarrow{OB}$)⊥($\overrightarrow{OA}$-$\overrightarrow{OB}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)f(x)=2sinx+cosx的圖象向右平移φ(φ∈(0,π))個單位后,所得圖象是一個偶函數(shù)的圖象,則tanφ的值是( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-2D.2

查看答案和解析>>

同步練習(xí)冊答案