8.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值為1,則a的取值范圍是(  )
A.$[\frac{1}{2},1)$B.(0,1)C.$(0,\frac{1}{2}]$D.(1,+∞)

分析 對(duì)x進(jìn)行分類討論,當(dāng)x≤2時(shí),f(x)=x-1和當(dāng)x>2時(shí),2+logax≤1.由最大值為1得到a的取值范圍.

解答 解:∵當(dāng)x≤2時(shí),f(x)=x-1,
∴f(x)max=f(2)=1
∵函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x≤2}\\{2+{{log}_a}x,x>2}\end{array}}$(a>0且a≠1)的最大值為1
∴當(dāng)x>2時(shí),2+logax≤1.
∴$\left\{\begin{array}{l}{0<a<1}\\{lo{g}_{a}2≤-1}\end{array}\right.$,
解得a∈[$\frac{1}{2}$,1)
故選:A

點(diǎn)評(píng) 本題考查分類討論以及由最大值為1得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班從6名干部中(其中男生4人,女生2人),選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及均值;
(2)求男生甲或女生乙被選中的概率;
(3)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一個(gè)機(jī)器零件的三視圖如圖所示,其中俯視圖是一個(gè)半圓內(nèi)切于邊長為3的正方形,則該機(jī)器零件的體積為$27+\frac{9}{8}π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{bx}{a{x}^{2}+c}$的圖象在點(diǎn)(0,0)處的切線方程為y=9x,其中a>0,b,c∈R,且b+c=10
(1)求b,c的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若在區(qū)間[1,2]上僅存在一個(gè)x0,使得f(x0)≥a,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知sinx•cosx=-$\frac{1}{4}$,且$\frac{3π}{4}$<x<π,則sinx+cosx的值( 。
A.$-\frac{3}{4}$B.$-\frac{1}{2}$C.$-\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.f(x)=|sin2x+$\frac{1}{2}}$|的最小正周期是(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{4}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.利用浮力原理巧妙地稱出了皇冠中黃金的重量的阿基米德,在他的墓碑上有一幅幾何圖案,如圖所示,因?yàn)榘⒒椎潞苄蕾p這三者的體積之比為V圓錐:V:V圓柱=1:2:3,他還得出球的表面積與它的外切圓柱的表面積之比等于它們的體積之比,都等于2:3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.己知x>$\frac{3}{2}$,則函數(shù)y=2x+$\frac{4}{2x-3}$的最小值是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知α,β是兩個(gè)不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m⊥n,m⊥α,則n∥α;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.
④若m∥α,α⊥β,則m⊥β.
其中真命題的個(gè)數(shù)是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案