10.實(shí)數(shù)m是[0,5]上的隨機(jī)數(shù),則關(guān)于x的方程x2-2x+m=0有實(shí)根的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

分析 由題意,本題是幾何概型,利用變量對(duì)應(yīng)事件的區(qū)間長(zhǎng)度比求概率.

解答 解:由題意,實(shí)數(shù)m是[0,5]上的隨機(jī)數(shù),區(qū)間長(zhǎng)度為5,
而在此條件下,滿足關(guān)于x的方程x2-2x+m=0有實(shí)根,
則△=4-4m≥0,解得0≤m≤1,區(qū)間長(zhǎng)度為1;
由幾何概型的公式得到所求概率為:$\frac{1}{5}$;
故選D.

點(diǎn)評(píng) 本題考查了幾何概型的概率求法;關(guān)鍵是明確事件的幾何測(cè)度為區(qū)間長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2017屆寧夏高三上月考一數(shù)學(xué)(文)試卷(解析版) 題型:選擇題

設(shè)全集是實(shí)數(shù)集,,則圖中陰影部分所表示的集合是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.以下四個(gè)命題,其中正確的個(gè)數(shù)有( 。
①由獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為物理成績(jī)與數(shù)學(xué)成績(jī)有關(guān),某人數(shù)學(xué)成績(jī)優(yōu)秀,則他有99%的可能物理優(yōu)秀.
②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
③在線性回歸方程$\widehat{y}=0.2x+12$中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量$\widehat{y}$平均增加0.2個(gè)單位;
④對(duì)分類變量X與Y,它們的隨機(jī)變量K2的觀測(cè)值k來說,k越小,“X與Y有關(guān)系”的把握程度越大.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某四棱錐的三視圖如圖所示,該四棱錐的體積是( 。
A.8$\sqrt{5}$B.$\frac{2\sqrt{5}}{3}$C.$\frac{4\sqrt{5}}{3}$D.$\frac{8\sqrt{5}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.己知直線l的極坐標(biāo)方程為2ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,點(diǎn)A的極坐標(biāo)為(2$\sqrt{2}$,$\frac{7π}{4}$),則點(diǎn)A到直線l的距離為( 。
A.$\frac{5}{2}$$\sqrt{2}$B.2$\sqrt{2}$C.$\frac{3}{2}$$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.小軍參加金臺(tái)區(qū)《太極之源 仙道金臺(tái)》大會(huì)的青年志愿者選拔,在已知備選的10道題中,小軍能答對(duì)其中的6道,規(guī)定考試從備選題中隨機(jī)地抽出3題進(jìn)行測(cè)試,至少答對(duì)2題才能入選.則小軍入選的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在區(qū)間[-1,1]上任取兩個(gè)數(shù)x,y,則點(diǎn)P(x,y)落在以原點(diǎn)為圓心,$\frac{1}{2}$為半徑的圓內(nèi)的概率是( 。
A.$\frac{π}{16}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l:y=x+b,圓C:x2+y2+2ax-2ay+2a2-4a=0(a>0).
(1)當(dāng)a=1時(shí),直線l與圓C相切,求b的值;
(2)當(dāng)b=1時(shí),是否存在a,使得直線l與圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),且滿足x1x2+y1y2=1?若存在,求出a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)p:x2-x-20≤0,q:$\frac{9}{x+4}$≥1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案