2.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1+2i}{z}$=i,則z在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由$\frac{1+2i}{z}$=i,得$z=\frac{1+2i}{i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出z在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo),則答案可求.

解答 解:由$\frac{1+2i}{z}$=i,
得$z=\frac{1+2i}{i}=\frac{-i(1+2i)}{-{i}^{2}}=2-i$,
則z在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:(2,-1),位于第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=4x-cosx,{an}是公差為$\frac{π}{2016}$的等差數(shù)列,f(a1)+f(a1009)+f(a2017)+f(a3025)+f(a4033)=10π,則f(a2017)+a1+a4033=3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2+$\frac{a}{x}$(a為實(shí)常數(shù)).
(1)若f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)判斷是否存在直線l與f(x)的圖象有兩個(gè)不同的切點(diǎn),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為E,F(xiàn),以O(shè)F(O為坐標(biāo)原點(diǎn))為直徑的圓C角雙曲線于A,B兩點(diǎn),AE與圓C相切,則該雙曲線的離心率為(  )
A.$\frac{\sqrt{2}+3\sqrt{6}}{2}$B.$\frac{2\sqrt{2}+\sqrt{6}}{2}$C.$\frac{3\sqrt{2}+\sqrt{6}}{2}$D.$\frac{3\sqrt{2}+2\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖中的程序框圖表示求三個(gè)實(shí)數(shù)a,b,c中最大數(shù)的算法,那么在空白的判斷框中,應(yīng)該填入( 。
A.a>xB.b>xC.c<xD.c>x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}$|=2,且($\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-$\overrightarrow b$)=-2,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示程序框圖,則輸出的結(jié)果是( 。
A.$\frac{1}{6}$B.$\frac{3}{4}$C.$\frac{9}{10}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知全集U=R,A=$\left\{{x\left|{\left.{\frac{x+1}{2-x}≥0}\right\}}\right.}$,B={x|lnx<0},則A∪B=( 。
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|x<-1或x≥2}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在棱長為4的正方體ABCD-A1B1C1D1中,點(diǎn)O為底面ABCD的中心,在正方體ABCD-A1B1C1D1內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P到點(diǎn)O的距離大于2的概率為1-$\frac{π}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案