7.拋物線y2=2px(p>0)上的動(dòng)點(diǎn)Q到焦點(diǎn)的距離的最小值為$\frac{3}{2}$,則p=( 。
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.3

分析 利用拋物線的頂點(diǎn)到焦點(diǎn)的距離最小,即可得出結(jié)論.

解答 解:因?yàn)閽佄锞y2=2px(p>0)上的動(dòng)點(diǎn)Q到焦點(diǎn)的距離的最小值為$\frac{3}{2}$,
所以$\frac{p}{2}$=$\frac{3}{2}$,
所以p=3.
故選:D.

點(diǎn)評(píng) 本題考查拋物線的方程與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知關(guān)于x的函數(shù)f(x)=x+$\frac{2}{x-1}$.
(1)當(dāng)x∈(1,+∞)時(shí),求函數(shù)f(x)的最小值;
(2)求不等式f(x)≥-2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知點(diǎn)F是拋物線x2=12y的焦點(diǎn),點(diǎn)P是其上的動(dòng)點(diǎn),若$\overrightarrow{FM}=\overrightarrow{MP}$,則點(diǎn)M的軌跡方程是x2=6y-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.拋物線x2=4y上一點(diǎn)P到焦點(diǎn)的距離為3,則點(diǎn)P到y(tǒng)軸的距離為(  )
A.2$\sqrt{2}$B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知F為拋物線y2=2px(p>0)的焦點(diǎn),點(diǎn)A(p,2)在拋物線上,則|AF|=( 。
A.$\frac{{3\sqrt{2}}}{2}$B.$\frac{3}{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.根據(jù)教材P45第6題可以證明函數(shù)g(x)=x2+ax+b滿足性質(zhì)$g(\frac{{{x_1}+{x_2}}}{2})≤\frac{{g({x_1})+g({x_2})}}{2}$,理解其中的含義.對(duì)于函數(shù)f(x)=2x,h(x)=log2x及任意實(shí)數(shù)x1,x2,仿照上述理解,可以推測(cè)(  )
A.$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≤\frac{{h({x_1})+h({x_2})}}{2}$
B.$f(\frac{{{x_1}+{x_2}}}{2})≥\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≥\frac{{h({x_1})+h({x_2})}}{2}$
C.$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≥\frac{{h({x_1})+h({x_2})}}{2}$
D.$f(\frac{{{x_1}+{x_2}}}{2})≥\frac{{f({x_1})+f({x_2})}}{2},h(\frac{{{x_1}+{x_2}}}{2})≤\frac{{h({x_1})+h({x_2})}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)x1,x2,…,x5的實(shí)數(shù),求具有下述性質(zhì)的最小正整數(shù)n:如果n個(gè)不同的、形如xp+xq+xr(1≤p<q<r≤5)的和都等于0,則x1=x2=…=x5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.德國(guó)數(shù)學(xué)家科拉茨1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即$\frac{n}{2}$);如果n是奇數(shù),則將它乘3加1(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:1可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為( 。
A.4B.6C.32D.128

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F且傾斜角為120°的直線l與拋物線在第一、四象限分別交于A、B兩點(diǎn),則$\frac{|AF|}{|BF|}$的值等于( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案