分析 (1)若命題p:?x∈R,ax2+2x+3≥0是真命題,則$\left\{\begin{array}{l}a>0\\△=4-12a≤0\end{array}\right.$,解得:實(shí)數(shù)a的取值范圍;
(2)若命題q:?x∈[0,π],使得sinx+cosx=m有解為真命題,m的范圍即為函數(shù)y=sinx+cosx,x∈[0,π]的值域,解得答案.
解答 解:(1)∵命題p:?x∈R,ax2+2x+3≥0是真命題,
∴$\left\{\begin{array}{l}a>0\\△=4-12a≤0\end{array}\right.$,
解得:a∈[$\frac{1}{3}$,+∞)
(2)∵當(dāng)x∈[0,π],y=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-1,$\sqrt{2}$]
若命題q:?x∈[0,π],使得sinx+cosx=m有解為真命題,
則m∈[-1,$\sqrt{2}$]
點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了全稱命題,特稱命題,函數(shù)恒成立問(wèn)題,函數(shù)的值域,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{3}{2}$ | B. | -$\frac{3}{4}$ | C. | -$\frac{3}{4}$或-$\frac{3}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com