18.已知點A(-1,1)、B(1,2)、C(-2,1)、D(3,4),則向量$\overrightarrow{AD}$在$\overrightarrow{CB}$方向上的投影為( 。
A.$-\frac{{3\sqrt{5}}}{2}$B.$-\frac{{3\sqrt{15}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{10}}}{2}$

分析 根據(jù)向量的坐標(biāo)公式以及向量投影的定義進(jìn)行求解即可.

解答 解:∵點A(-1,1),B(1,2),C(-2,1),D(3,4),
∴$\overrightarrow{AD}$=(4,3),$\overrightarrow{CB}$=(3,1),
∴$\overrightarrow{AD}$•$\overrightarrow{CB}$=4×3+3×1=15,|$\overrightarrow{CB}$|=$\sqrt{{3}^{2}+{1}^{2}}$=10,
∴向量$\overrightarrow{AD}$在$\overrightarrow{CB}$方向上的投影為$\frac{\overrightarrow{AD}•\overrightarrow{CB}}{|\overrightarrow{CB}|}$=$\frac{15}{\sqrt{10}}$=$\frac{3\sqrt{10}}{2}$,
故選:D.

點評 本題主要考查向量投影的計算,根據(jù)向量投影的定義以及向量數(shù)量積的公式進(jìn)行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合A={x|-4+a<x<4+a},B={x|<-1或x>5}.
(Ⅰ)若a=1,求出集合A和集合A∩B;
(Ⅱ)若A∪B=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(Ⅱ)設(shè)PD=AD=2,求點D到面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x+1|+|x-2|-m
(1)當(dāng)m=5時,求f(x)>0的解集;
(2)若關(guān)于x的不等式f(x)≥0的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知$(1-\frac{1}{x}){(1+x)^5}$的展開式中x3項的系數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知角α的終邊上有一點P(1,3),則$\frac{{sin(π-α)-sin(\frac{π}{2}+α)}}{2cos(α-2π)}$的值為( 。
A.1B.$-\frac{4}{5}$C.-1D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-(2a+1)x+alnx(a∈R).
(Ⅰ)若f(x)在區(qū)間[1,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)函數(shù)g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=3sin(2x-$\frac{π}{6}$)+2的單調(diào)遞減區(qū)間是[$\frac{π}{3}$+kπ,$\frac{5}{6}$π+kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)求值(tan10°-$\sqrt{3}$)•sin40°    
(2)化簡$\frac{2co{s}^{4}x-2co{s}^{2}x+\frac{1}{2}}{2tan(\frac{π}{4}-x)si{n}^{2}(\frac{π}{4}+x)}$.

查看答案和解析>>

同步練習(xí)冊答案