求導(dǎo):
(1)y=3x•ex-2x+e;
(2)y=
ex+1
ex-1
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式進(jìn)行求解即可.
解答: 解:(1)函數(shù)的導(dǎo)數(shù)為y′=ln3•3x•ex+3x•ex-ln2•2x;
(2)y′=
ex(ex-1)-(ex+1)ex
(ex-1)2
=
-2ex
(ex-1)2
點(diǎn)評:本題主要考查導(dǎo)數(shù)的計(jì)算,要求熟練掌握掌握常見函數(shù)的導(dǎo)數(shù)公式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①命題“若x≠1,則x2-3x+2≠0”的否命題是“若x=1,則x2-3x+2=0”;
②命題“?x∈R,lg(x2+x+1)≥0”是假命題;
③命題“若x=2,則向量
a
=(-x,1)與
b
=(-4,x)共線”的逆否命題是真命題.
其中正確的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=10x-
1
10
+1,x∈R,函數(shù)y=f(x)是函數(shù)y=g(x)的反函數(shù),求函數(shù)y=f(x)的解析式,并寫出定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F是雙曲線
x2
a2
-
y2
b2
=1的左焦點(diǎn),E是該雙曲線的右頂點(diǎn),過F垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是等腰直角三角形,則該雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(
π
2
x+
π
6
)-2sin2
π
4
x,求函數(shù)f(x)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以點(diǎn)(3,-1)為圓心且與直線3x+4y=0相切的圓的方程是( 。
A、(x-3)2+(y+1)2=1
B、(x+3)2+(y-1)2=1
C、(x+3)2+(y-1)2=2
D、(x-3)2+(y+1)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)f(x)=|x+a|在(-∞,-1)上是單調(diào)函數(shù);q:函數(shù)g(x)=loga(x+1)(a>0且a≠1)在(-1,+∞)上是增函數(shù);則¬p成立是q成立的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則tan2α的值為( 。
A、-
4
5
B、-
4
3
C、
4
3
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z1是復(fù)數(shù),z2=z1-i
.
z1
(其中
.
z1
表示z1的共軛復(fù)數(shù)),已知z2的實(shí)部是-3,則z2的虛部為
 

查看答案和解析>>

同步練習(xí)冊答案