已知A+B=225°,求
1
1+tanA
1
1+tanB
的值.
考點(diǎn):兩角和與差的正切函數(shù),三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:先將分母展開,注意到A+B=225°,因此可以利用兩角和的正切公式化簡(jiǎn)分母.最終求出結(jié)果.
解答: 解:原式=
1
1+tanA+tanB+tanA•tanB

因?yàn)?span id="4ci83hb" class="MathJye">tan(A+B)=
tanA+tanB
1-tanA•tanB
=tan225°=tan(180°+45°)=tan45°=1.
故tanA+tanB=1-tanA•tanB,代入原式得
原式=
1
2
點(diǎn)評(píng):本題考查了兩角和的正切公式的變形應(yīng)用,要熟練準(zhǔn)確的理解掌握兩角和的正切公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,
AB
=
a
,
AC
=
b
,若
BC
=
DC
,
AE
=2
EC
,則
ED
=
 
.(用
a
,
b
表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P點(diǎn)在圓O內(nèi),弦AB的中點(diǎn)是P,圓內(nèi)接正三角形的邊長(zhǎng)為a,則|AB|≥a的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F是拋物線y2=4x的焦點(diǎn),過(guò)點(diǎn)(2,1)的直線與拋物線相交于A,B兩點(diǎn)
(1)若點(diǎn)F在直線AB上,求|AB|的值;
(2)若點(diǎn)P是線段AB的中點(diǎn),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中∠A=30°,a=8,c=10,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα,cosα是關(guān)于x的方程x2-ax+a=0的兩個(gè)根,則
1+cos2α-sin2α
1-sin2α-cos2α
+
1-sin2α-cos2α
1+cos2α-sin2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
12
13
,α∈(
π
2
,π),cosβ=
3
5
,β∈(-
π
2
,0),求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線f(x)=xsinx+1在點(diǎn)(
π
2
,1)處的切線與直線l垂直,且直線l與坐標(biāo)軸圍成的三角形面積為之2,則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若
DB
AC
,
DC
AB
,求點(diǎn)D的坐標(biāo);
(2)問(wèn)是否存在實(shí)數(shù)α,β,使得
AC
AB
BC
成立?若存在,求出α,β的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案