分析 根據(jù)題意,利用向量表示出$\overrightarrow{AD}$、$\overrightarrow{AP}$,計算$\overrightarrow{DP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$),再求$\overrightarrow{AP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)的結(jié)果即可.
解答 解:如圖所示,
BC的中點為D,則$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),$\overrightarrow{AP}$=$\overrightarrow{AD}$+$\overrightarrow{DP}$,
可得$\overrightarrow{DP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\overrightarrow{DP}$•$\overrightarrow{CB}$=0;
∴$\overrightarrow{AP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=($\overrightarrow{AD}$+$\overrightarrow{DP}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)+$\overrightarrow{DP}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)
=$\frac{1}{2}$(${\overrightarrow{AB}}^{2}$-${\overrightarrow{AC}}^{2}$)+$\overrightarrow{DP}$•$\overrightarrow{CB}$
=$\frac{1}{2}$×(42-32)+0
=$\frac{7}{2}$.
故答案為:$\frac{7}{2}$.
點評 本題主要考查兩個向量的加減法的法則,以及其幾何意義,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | C. | (-∞,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4$\sqrt{3}$sin(B+60°)+3 | B. | 4$\sqrt{3}$sin(B+30°)+3 | C. | 6sin(B+60°)+3 | D. | 6sin(B+30°)+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com