9.已知點P(-$\sqrt{3}$,1),點Q在y軸上,且直線PQ的傾斜角為120°,則Q點的坐標(biāo)為( 。
A.(0,2)B.(0,-2)C.(2,0)D.(-2,0)

分析 設(shè)Q點坐標(biāo)為(0,y),利用斜率與傾斜角的關(guān)系可知:$\frac{y-1}{0+\sqrt{3}}=-\sqrt{3}$,解得即可.

解答 解:設(shè)Q點坐標(biāo)為(0,y),則$\frac{y-1}{0+\sqrt{3}}=-\sqrt{3}$,解得y=-2.
因此Q(0,-2).
故選B.

點評 本題考查了直線的斜率計算公式與傾斜角的正切之間的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某公司一年經(jīng)銷某種商品,年銷售量400噸,每噸進(jìn)價5萬元,每噸銷售價8萬元.全年進(jìn)貨若干次,每次都購買x噸,運費為每次2萬元,一年的總存儲費用為2x萬元.
(1)求該公司經(jīng)銷這種商品一年的總利潤y與x的函數(shù)關(guān)系;
(2)要使一年的總利潤最大,則每次購買量為多少?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=-2x2+4x g(x)=log2(x+1)如果函數(shù)y=g[f(x)]在區(qū)間[1,m)上是單調(diào)遞減函數(shù),則m的取值范圍是1<m≤$\frac{2+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知各項均不相等的等差數(shù){an}的前五項S5=20,a1,a3,a7成等比數(shù)列.
(1)求數(shù){an}的通項公式;
(2)Tn為數(shù){$\frac{1}{{a}_{n}{a}_{n+1}}$}的n項和Tn;
(3)若存在n∈N*,使得Tn-λan+1≥0成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出定義:若函數(shù)f(x)在D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在D上也可導(dǎo),則稱f(x)在D上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù)在$({0,\frac{π}{2}})$上是凸函數(shù)的是①③④.
①f(x)=sinx+cosx②f(x)=-xe-x③f(x)=lnx-2x④f(x)=-x3+2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:若m>n,則-m<-n:命題q:若m>n,則m2>n2,在下列命題中
①p∧q;
②p∨q;
③p∧(?q);
④(?p)∨q中,其中真命題是( 。
A.①③B.①④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$f(x)=sin(2x+\frac{π}{6})+\frac{1}{2}$
(1)用五點法完成下列表格,并畫出函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{11π}{12}]$上的簡圖;
(2)若$x∈[-\frac{π}{6},\frac{π}{3}]$,函數(shù)g(x)=f(x)+m的最小值為2,試求處函數(shù)g(x)的最大值,指出x取值時,函數(shù)g(x)取得最大值.
x     
 2x+$\frac{π}{6}$     
 sin(2x+$\frac{π}{6}$)     
 f(x)     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)A1,A2分別為雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的上下頂點,若雙曲線上存在點M使得兩直線斜率k${\;}_{M{A}_{1}}$•k${\;}_{M{A}_{2}}$,則雙曲線C的離心率的取值范圍為(  )
A.(0,$\frac{\sqrt{6}}{2}$)B.(1,$\frac{\sqrt{6}}{2}$)C.($\frac{\sqrt{6}}{2}$,+∞)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)$f(x)={log_2}(4x)•{log_2}(2x),\frac{1}{4}≤x≤4$.
(1)若t=log2x,求y關(guān)于t的函數(shù)解析式,并寫出t的范圍;?
(2)求f(x) 的最值,并給出最值時相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊答案