分析 將曲線|x|+|y|=1在矩陣M=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{3}}\end{array}]$對應(yīng)的變換作用進行化簡,作出表示的曲線所圍成的圖形即可得到結(jié)論.
解答 解:設(shè)曲線|x|+|y|=1上(x0,y0)在矩陣M=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{3}}\end{array}]$對應(yīng)的變換作用下得到的曲線對應(yīng)點為(x,y),
∴$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{3}}\end{array}]$[$\underset{\stackrel{{x}_{0}}{\;}}{{y}_{0}}$]=[$\underset{\stackrel{x}{\;}}{y}$],即x0=x,y0=3y,
代入|x|+|y|=1中得:|x|+|3y|=1,
當(dāng)x≥0,y≥0時,方程等價于x+3y=1;
當(dāng)x≥0,y≤0時,方程等價于x-3y=1;
當(dāng)x≤0,y≥0時,方程等價于-x+3y=1;
當(dāng)x≤0,y≤0時,方程等價于-x-3y=1,
其圖象為菱形ABCD,
則曲線|x|+|y|=1在矩陣M=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{3}}\end{array}]$對應(yīng)的變換作用下得到的曲線所圍成圖形的面積為$\frac{1}{2}$×2×$\frac{2}{3}$=$\frac{2}{3}$.
點評 此題考查了幾種特殊的矩形變換,確定出變換后的曲線方程是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com