分析 由題意可知:雙曲線的第二定義可知:$\frac{丨PF丨}{丨PN丨}$=e,可得丨PF丨=e丨PN丨=2丨PN丨,丨PN丨=$\frac{1}{2}$丨PF丨,丨PM丨+$\frac{1}{2}$丨PF丨=丨PM丨+丨PN丨,當(dāng)且僅當(dāng)M、N、P三點(diǎn)共線時(shí)丨PM丨+丨PN丨=丨MN丨時(shí)取最小值,代入求得P點(diǎn)坐標(biāo),即可求得丨PM丨+$\frac{1}{2}$丨PF丨的最小值為丨MN丨=$\frac{7}{2}$.
解答 解:雙曲線$\frac{x^2}{9}-\frac{y^2}{27}=1$,焦點(diǎn)在x軸上,a=3,b=3$\sqrt{3}$,c=$\sqrt{{a}^{2}+^{2}}$=6,
由雙曲線離心率e=$\frac{c}{a}$=2,右準(zhǔn)線為x=$\frac{{a}^{2}}{c}$=$\frac{3}{2}$,
作MN⊥l于N,交雙曲線右支于P,連結(jié)FP,則
由雙曲線的第二定義可知:$\frac{丨PF丨}{丨PN丨}$=e,可得丨PF丨=e丨PN丨=2丨PN丨,
∴丨PN丨=$\frac{1}{2}$丨PF丨,
因此丨PM丨+$\frac{1}{2}$丨PF丨=丨PM丨+丨PN丨,
當(dāng)且僅當(dāng)M、N、P三點(diǎn)共線時(shí)丨PM丨+丨PN丨=丨MN丨時(shí)取最小值,
此時(shí),在雙曲線$\frac{x^2}{9}-\frac{y^2}{27}=1$中,令y=3,解得:x=±2$\sqrt{3}$,
∴x>0,
∴取x=2$\sqrt{3}$,
即當(dāng)P的坐標(biāo)為(2$\sqrt{3}$,3)時(shí)丨PM丨+$\frac{1}{2}$丨PF丨的最小值為丨MN丨=$\frac{7}{2}$.
丨PM丨+$\frac{1}{2}$丨PF丨的最小值為$\frac{7}{2}$.
故答案為:$\frac{7}{2}$.
點(diǎn)評 本題考查雙曲線的標(biāo)準(zhǔn)方程,直線與雙曲線的位置關(guān)系,考查雙曲線的第二定義的應(yīng)用,考查計(jì)算能力,屬于中檔題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x<0,sinx≤0或tanx≤0 | B. | ?x<0,sinx≤0且tanx≤0 | ||
C. | ?x≥0,sinx≤0或tanx≤0 | D. | ?x≥0,sinx≤0且tanx≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$或$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$或$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,2) | B. | (-2,-1] | C. | (-2,-1) | D. | (2,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com