12.若b>a>3,f(x)=$\frac{lnx}{x}$,則下列各結(jié)論正確的是(  )
A.f(a)<f($\sqrt{ab}$)<f($\frac{a+b}{2}$)B.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(b)C.f($\sqrt{ab}$)<f($\frac{a+b}{2}$)<f(a)D.f(a)>f($\sqrt{ab}$)>f($\frac{a+b}{2}$)

分析 求出函數(shù)的導數(shù),通過解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)性,從而比較函數(shù)值的大小即可.

解答 解:∵f(x)=$\frac{lnx}{x}$,
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$,令f′(x)=0,解得x=e,
當x≥e時,f′(x)<0,為減函數(shù),當0<x<e時,f′(x)>0,為增函數(shù),
∵b>a>3>e,
∴ab>b>$\frac{a+b}{2}$>$\sqrt{ab}$>a>e,
∴f(a)>f($\sqrt{ab}$)>f($\frac{a+b}{2}$)>f(b)>f(ab),
故選:D.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.在三棱錐O-ABC中,M,N分別是OA,BC的中點,G是三角形ABC的重心,則$\overrightarrow{OG}$=( 。
A.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{4}$$\overrightarrow{OC}$B.$\frac{1}{4}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$C.$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$D.$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知斜三棱柱ABC一A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點D,且BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求二面角A-A1B-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2},x≤0}\\{lg(x+1),x>0}\end{array}\right.$,若f(2-x2)>f(x),則x的取值范圍是( 。
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.下列說法正確的有:(1)(4)
(1)在△ABC中,當sinA>sinB時,一定有A>B;
(2)在△ABC中,2cosBsinA=sinC,則△ABC的一定是等腰直角三角形;
(3)在△ABC中,若a=6,b=9,A=45°,則解該三角形有兩解;
(4)函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x的圖象可以由函數(shù)g(x)=4sinxcosx的圖象向右平移$\frac{π}{12}$個單位得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在四棱錐S-ABCD中,底面ABCD是平行四邊形,M、N分別是SA,BD上的點.
①若$\frac{SM}{MA}$=$\frac{DN}{NB}$,則MN∥面SCD;
②若$\frac{SM}{MA}$=$\frac{NB}{DN}$,則MN∥面SCB;
③若面SDA⊥面ABCD,且面SDB⊥面ABCD,則SD⊥面ABCD.其中正確的命題個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+$\frac{1}{x}$|+|x-$\frac{1}{x}$|.
(Ⅰ)判斷該函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)利用絕對值及分段函數(shù)知識,將函數(shù)解析式寫成分段函數(shù)形式(不需過程),然后在給定的坐標系中畫出函數(shù)圖象(不需列表);
(Ⅲ)若函數(shù)f(x)在區(qū)間[a-1,2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知點P為圓C:x2+y2-2x-4y+1=0上的動點,點P到某直線l的最大距離為6.若在直線l上任取一點A作圓C的切線AB,切點為B,則AB的最小值是2$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.過點A(2,0)且與圓x2+4x+y2-32=0內(nèi)切的圓的圓心的軌跡方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

同步練習冊答案