5.已知數(shù)列{an}的通項(xiàng)公式an=6n-1,問這個(gè)數(shù)列是等差數(shù)列嗎?若是等差數(shù)列,其首項(xiàng)與公差分別是多少?

分析 數(shù)列{an}的通項(xiàng)公式an=6n-1,n=1時(shí),a1=5;n≥2時(shí),an-an-1=6,利用等差數(shù)列的定義即可得出答案.

解答 解:∵數(shù)列{an}的通項(xiàng)公式an=6n-1,
∴n=1時(shí),a1=5;n≥2時(shí),an-an-1=6n-1-(6n-7)=6,
因此這個(gè)數(shù)列是等差數(shù)列,其首項(xiàng)與公差分別是5,6.

點(diǎn)評(píng) 本題考查了等差數(shù)列的定義、通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=3sin(2x+$\frac{π}{6}$).
(Ⅰ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{2}$,-$\frac{π}{12}}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}是首項(xiàng)為1的等差數(shù)列,且公差不為零.a(chǎn)1,a2,a6剛好是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,若數(shù)列{cn}滿足c1=b1,cn+1-cn=bn,問是否存在正整數(shù)n,使得cn>Sn?若存在,求出n的值;若不存在,請(qǐng)說明理由.
(3)設(shè)An=cn-an,求證:An+2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在三角形AB中,$\overrightarrow{AB}$-$\overrightarrow{BC}$-$\overrightarrow{CA}$=2$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求下列函數(shù)的值域
(1)y=x2-1,x∈{-1,0,1}
(2)y=-x2+x+2
(3)y=2x+3
(4)y=$\frac{2}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)若a是正實(shí)數(shù),2a2+3b2=10,求a$\sqrt{2+^{2}}$的最大值.
(2)已知a>0,b>0,a+b=1,求$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+1}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{3{a}_{n}+5}$(n∈N*),求通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-a1,且$\sqrt{{a}_{3}}$是a1,a2的等比中項(xiàng).
(1)求a1;
(2)設(shè)bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若Tn=$\frac{19}{20}$,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥0}\\{f(x+1)+1,x<0}\end{array}\right.$,則f(2)+4f(-4.5)=20.

查看答案和解析>>

同步練習(xí)冊(cè)答案