分析 根據(jù)條件先求出集合B,C,利用條件C⊆B,即可求實數(shù)a的取值范圍.
解答 解:∵非空集合A={x|-1≤x≤a},∴a≥-1,
∴B={y|y=-2x,x∈A}={y|y=-2x,-1≤x≤a}={y|-2a≤y≤2},
C={y|y=$\frac{1}{x+2}$,x∈A}={y|$\frac{1}{a+2}$≤y≤1},
∵C⊆B,
∴$\left\{\begin{array}{l}{\frac{1}{a+2}≥-2a}\\{a≥-1}\end{array}\right.$,
解得a≥-1+$\frac{\sqrt{2}}{2}$
故實數(shù)a的取值范圍是[-1+$\frac{\sqrt{2}}{2}$,+∞),
故答案為:[-1+$\frac{\sqrt{2}}{2}$,+∞).
點評 本題主要考查集合關(guān)系的應(yīng)用,利用集合之間的關(guān)系求出集合B,C是解決本題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等邊三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com