8.若復(fù)數(shù)(a+i)(2+i)是純虛數(shù),則實數(shù)a等于(  )
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

分析 利用復(fù)數(shù)代數(shù)形式的乘法運算化簡,由實部為0且虛部不為0得答案.

解答 解:∵(a+i)(2+i)=2a-1+(a+2)i是純虛數(shù),
∴$\left\{\begin{array}{l}{2a-1=0}\\{a+2≠0}\end{array}\right.$,解得a=$\frac{1}{2}$.
故選:B.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$,a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,已知$cosB=\frac{1}{3},f(\frac{C}{2})=-\frac{1}{4}$,其中角C為銳角,則sinA=(  )
A.$\frac{{2\sqrt{2}+\sqrt{3}}}{6}$B.$\frac{{2\sqrt{2}-\sqrt{3}}}{6}$C.$\frac{{\sqrt{2}+2\sqrt{3}}}{6}$D.$\frac{{\sqrt{2}-2\sqrt{3}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一個周期內(nèi)的圖象如圖.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=2cos2($\frac{π}{4}$-$\frac{x}{2}}$),x∈[0,2π]的遞減區(qū)間為( 。
A.[0,π]B.[$\frac{π}{2}$,π]C.[${\frac{π}{3}$,$\frac{5π}{3}}$]D.[$\frac{π}{2}$,$\frac{3π}{2}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知二次函數(shù)f(x)=ax2+bx+c的圖象開口向下,且頂點在第一象限,則它的導(dǎo)函數(shù)y=f′(x)的大致圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-1,2]上是減函數(shù),則( 。
A.2b+c有最大值9B.2b+c有最小值9C.2b+c有最大值-9D.2b+c有最小值-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x-1}}\;,\;x≤1\\{log_3}(x+1)\;,\;x>1\end{array}$,不等式f(x+1)-1>0的解集是( 。
A.{x|x<0或x>1}B.{x|x<1或x>2}C.{x|x<2或x>3}D.{x|x<0或x>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)f(x)=x2lnx在點(x0,f(x0))處的切線平行于x軸,則f(x0)等于(  )
A.-2eB.2eC.-$\frac{1}{2e}$D.$\frac{1}{2e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知直線ax-by+2=0(a>0,b>0)被圓x2+y2+2x-2y+1=0截得的弦長為2,則$\frac{1}{a}$+$\frac{2}$的最小值為( 。
A.3B.$\frac{3}{2}$+$\sqrt{2}$C.2+$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案