分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)增區(qū)間.
(3)根據(jù)f(x)得解析式,利用正弦函數(shù)的定義域和值域,求得函數(shù)f(x)的值域.
解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在一個(gè)周期內(nèi)的圖象,
可得A=2,$\frac{1}{2}•\frac{2π}{ω}$=$\frac{5π}{12}$-(-$\frac{π}{12}$),∴ω=2.
再根據(jù)五點(diǎn)法作圖可得2•(-$\frac{π}{12}$)+φ=$\frac{π}{2}$,∴φ=$\frac{2π}{3}$,∴f(x)=2sin(2x+$\frac{2π}{3}$).
(2)令2kπ-$\frac{π}{2}$≤2x+$\frac{2π}{3}$≤2kπ+$\frac{π}{2}$,求得 kπ-$\frac{7π}{12}$≤x≤kπ-$\frac{π}{12}$,故函數(shù)的增區(qū)間為[kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z.
(3)由f(x)=2sin(2x+$\frac{2π}{3}$),利用正弦函數(shù)的值域,可得它的值域?yàn)閇-2,2].
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值.正弦函數(shù)的單調(diào)性、定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | h=-8sin($\frac{π}{6}$t)+10 | B. | h=-8cos($\frac{π}{3}$t)+10 | C. | h=8cos($\frac{π}{6}$t)+10 | D. | h=-8cos($\frac{π}{6}$t)+10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一條 | B. | 兩條 | C. | 三條 | D. | 四條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com