若(1-x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,則a1 十a(chǎn)2 十a(chǎn)3十a(chǎn)4十a(chǎn)5的值等于(  )
A、-31B、0C、1D、32
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:根據(jù)題意,在(1-x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5中,令x=-1可得a0=32,令x=0可得a0+a1+a2+a3+a4+a5=1,兩式綜合可得答案.
解答: 解:在(1-x)5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5
令x=-1可得,25=a0,則a0=32,
令x=0可得,(1-0)5=1=a0+a1+a2+a3+a4+a5,則a0+a1+a2+a3+a4+a5=1,
則a1+a2+a3+a4+a5=(a0+a1+a2+a3+a4+a5)-a0=1-32=-31;
故選:A.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的運(yùn)用,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若sinx=
1-a
2
,x∈[
π
3
,π]上有兩個(gè)實(shí)數(shù)根,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐S-ABCD的底面是邊長為2的正方形,每條側(cè)棱的長都是底面邊長的
2
倍,P為側(cè)棱SD上的點(diǎn).
(Ⅰ)當(dāng)SP:PD為何值時(shí),直線SD⊥平面PAC,
(Ⅱ)在(1)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC,若存在,求SE:EC的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

依據(jù)三角函數(shù)線,做出如下四個(gè)判斷:①sin
π
6
=sin
6
;②cos
π
4
=cos(-
π
4
);③tan
π
8
>tan
8
;④sin
5
>sin
5
,其中判斷正確的有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)滿足f(a+x)+f(a-x)=2b(其中a,b不同時(shí)為0),則稱函數(shù)y=f(x)為“準(zhǔn)奇函數(shù)”,稱點(diǎn)(a,b)為函數(shù)f(x)的“中心點(diǎn)”.現(xiàn)有如下命題:
①函數(shù)f(x)=sinx+1是準(zhǔn)奇函數(shù);
②若準(zhǔn)奇函數(shù)y=f(x)在R上的“中心點(diǎn)”為(a,f(a)),則函數(shù)F(x)=f(x+a)-f(a)不是R上的奇函數(shù);
③已知函數(shù)f(x)=x3-3x2+6x-2是準(zhǔn)奇函數(shù),則它的“中心點(diǎn)”為(1,2);
④已知函數(shù)f(x)=2x-cosx為“準(zhǔn)奇函數(shù)”,數(shù)列{an}是公差為
π
8
的等差數(shù)列,若
7
n=1
f(an)=7π(其中
n
i=1
ai表示
n
i=1
ai=a1+a2+…+an),則
[f(a4)]2
a1a7
=
64
7

其中正確的命題是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4枚完全相同的硬幣,每個(gè)硬幣都分正反兩面,把4枚硬幣擺成一摞,滿足相鄰兩枚硬幣的正面與正面不相對(duì),不同的擺法有
 
 種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非負(fù)實(shí)數(shù)x,y滿足
x+y≤4
x-y≤1
,若實(shí)數(shù)k滿足y+1=k(x+1),則( 。
A、k的最小值為1,k的最大值為
5
7
B、k的最小值為
1
2
,k的最大值為
5
7
C、k的最小值為
1
2
,k的最大值為5
D、k的最小值為
5
7
,k的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面為棱形,PA⊥底面ABCD,∠ABC=60°.E,F(xiàn),M分別是BC,CD,PB的中點(diǎn).
(1)證明:AB⊥MF;
(2)若PA=BA,求二面角E-MF-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行右邊的程序框圖,則輸出的A是(  )
A、
29
12
B、
70
29
C、
29
70
D、
169
70

查看答案和解析>>

同步練習(xí)冊答案