已知直線l:Ax+By+C=0(A≠0,B≠0),點M0(x0,y0),則方程
x-x0
A
=
y-y0
B
表示( 。
A、經(jīng)過點M0且平行于l的直線
B、經(jīng)過點M0且垂直于l的直線
C、不一定經(jīng)過M0但平行于l的直線
D、不一定經(jīng)過M0但垂直于l的直線
考點:直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:由直線
x-x0
A
=
y-y0
B
的斜率與已知直線的斜率互為負(fù)倒數(shù),且M0(x0,y0)適合方程
x-x0
A
=
y-y0
B
得答案.
解答: 解:由
x-x0
A
=
y-y0
B
,得Bx-Bx0=Ay-Ay0,即Bx-Ay-Bx0+Ay0=0,
∴Bx-Ay-Bx0+Ay0=0與Ax+By+C=0(A≠0,B≠0)垂直,
又M0(x0,y0)適合方程Bx-Ay-Bx0+Ay0=0,
∴方程
x-x0
A
=
y-y0
B
表示經(jīng)過點M0且垂直于l的直線.
故選:B.
點評:本題考查了直線的方程,考查了直線垂直與斜率的關(guān)系,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“x>2”是“x>0”成立的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點P到A(0,2)的距離比它到x軸的距離大2,則動點P的軌跡方程是( 。
A、y2=8x
B、y2=8x或y=0(x<0)
C、x2=8x
D、x2=8x或x=0(y<0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lg3+lg6+lg5-lg9=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(-
5
3
)2
+(
27
64
 -
1
3
0+log 
1
2
2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,且a1=1,Sn+1=4an+k(k≠-1,n∈N*).
(1)設(shè)bn=an+1-2an,求證:{bn}是等比數(shù)列:
(2)設(shè)cn=
an
2n
,且{cn}是公差為1的等差數(shù)列,求k及Sn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線的方程為(3a-1)x+(2-a)y-1=0.
(1)求證:無論實數(shù)a為何值時,直線總經(jīng)過第一象限;
(2)為使直線不經(jīng)過第二象限,求實數(shù)a在取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
3
5
 
-x2+x+2
的遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求直線l:2x-y-2=0,被圓C:(x-3)2+y2=9所截得的弦長.

查看答案和解析>>

同步練習(xí)冊答案