4.設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,若a=$\sqrt{3}$,則bcosC+ccosB=$\sqrt{3}$.

分析 根據(jù)題意,由余弦定理可得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,將其代入bcosC+ccosB中計算可得答案.

解答 解:根據(jù)題意,△ABC中,由余弦定理可得cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$,
bcosC+ccosB=b×$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$+c×$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=a=$\sqrt{3}$,
即bcosC+ccosB=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點評 本題考查余弦定理的運用,解題的關(guān)鍵是正確利用余弦定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.己知(1+2x)2n展開式的二項式系數(shù)之和是(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n展開式的二項式系數(shù)之和的64倍.
(1)求(1+2x)2n展開式的第3項;
(2)求(2$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n展開式含x的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在圓中有“圓心與弦(非直徑)的中點的連線垂直于弦所在的直線”.比上述性質(zhì),相應(yīng)地:在球中有球心與截面圓(不經(jīng)過球心的截面圓)圓心的連線垂直于截面圓所在的平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC的三內(nèi)角A,B,C所對邊長分別是a,b,c,若$\frac{sinB-sinA}{sinC}$=$\frac{{\sqrt{3}a+c}}{a+b}$,則角B的大小為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義在[0,1]上的函數(shù)f(x)滿足:①f(0)=0;②f(x)+f(1-x)=1;③f($\frac{x}{3}$)=$\frac{1}{2}$f(x);④當(dāng)0≤x1<x2≤1時,f(x1)≤f(x2).則f($\frac{1}{2016}$)=$\frac{1}{128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知復(fù)數(shù)z=1+i,則$\frac{{|{z-1}|}}{\overline{z}-1}$的值等于(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(2x-$\frac{π}{2}$),下列結(jié)論錯誤的是( 。
A.f(x)的最小正周期為πB.f(x)在區(qū)間$[{0,\frac{π}{2}}]$上是增函數(shù)
C.f(x)的圖象關(guān)于點$({-\frac{3π}{4},0})$對稱D.f(x)的圖象關(guān)于直線$x=\frac{5π}{4}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.為了普及環(huán)保知識,增強環(huán)保意識,隨機(jī)抽取某大學(xué)30民學(xué)生參加環(huán)保知識測試,得分(10分制)如圖所示,假設(shè)得分的中位數(shù)為me,眾數(shù)為mσ,平均數(shù)為$\overline{x}$,則me,mσ,$\overline{x}$之間的大小關(guān)系是mσ<me<$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知B=60°,a+c=4.
(1)當(dāng)a,b,c成等差數(shù)列時,求△ABC的面積;
(2)設(shè)D為AC邊的中點,求線段BD長的最小值.

查看答案和解析>>

同步練習(xí)冊答案