A. | $\frac{π}{6}$ | B. | $\frac{5π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
分析 利用正弦定理化簡(jiǎn)已知可得c2+a2-b2=-$\sqrt{3}$ac,由余弦定理可得cosB=-$\frac{\sqrt{3}}{2}$,結(jié)合范圍B∈(0,π),即可解得B的值.
解答 解:在△ABC中,由正弦定理$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2R$,可得:sinB=$\frac{2R}$,sinA=$\frac{a}{2R}$,sinC=$\frac{c}{2R}$,
∵$\frac{sinB-sinA}{sinC}$=$\frac{{\sqrt{3}a+c}}{a+b}$,可得:$\frac{b-a}{c}$=$\frac{{\sqrt{3}a+c}}{a+b}$,整理可得:c2+a2-b2=-$\sqrt{3}$ac,
∴由余弦定理可得:cosB=$\frac{{c}^{2}+{a}^{2}-^{2}}{2ac}$=-$\frac{\sqrt{3}}{2}$,
∵B∈(0,π),
∴B=$\frac{5π}{6}$.
故選:B.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -$\frac{7}{25}$ | C. | $\frac{7}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{π}{3}$] | B. | [$\frac{π}{6}$,π) | C. | [$\frac{π}{3}$,π) | D. | (0,$\frac{π}{6}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,2] | B. | (-1,2] | C. | (-1,+∞) | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -4 | B. | -2 | C. | 0 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com