考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間,二次函數(shù)的性質(zhì),函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,數(shù)形結(jié)合,分類討論,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)求出a=2的函數(shù)解析式,討論x≥2時(shí),x<2時(shí),二次函數(shù)的對稱軸與區(qū)間的關(guān)系,即可得到增區(qū)間;
(2)函數(shù)g(x)=f(x)-1的零點(diǎn)個(gè)數(shù)即為y=f(x)與y=1的交點(diǎn)個(gè)數(shù).畫出圖象,討論a=0,a>0,①a=2,②0<a<2③a>2,及a<0,通過圖象和對稱軸,即可得到交點(diǎn)個(gè)數(shù).
解答:
解:(1)當(dāng)a=2時(shí),f(x)=x|x-2|,
當(dāng)x≥2時(shí),f(x)=x
2-2x,對稱軸為x=1,
所以,f(x)的單調(diào)遞增區(qū)間為(2,+∞);
當(dāng)x<2時(shí),f(x)=-x
2+2x,對稱軸為x=1,
所以,f(x)的單調(diào)遞增區(qū)間為(-∞,1).
(2)令g(x)=f(x)-1=0,即f(x)=1,f(x)=
,
求函數(shù)g(x)的零點(diǎn)個(gè)數(shù),即求y=f(x)與y=1的交點(diǎn)個(gè)數(shù);
當(dāng)x≥a時(shí),f(x)=x
2-ax,對稱軸為x=
,
當(dāng)x<a時(shí),f(x)=-x
2+ax,對稱軸為x=
,
①當(dāng)a=0時(shí),f(x)=x|x|,
故由圖象可得,
y=f(x)與y=1只存在一個(gè)交點(diǎn).
②當(dāng)a>0時(shí),
<a,且f(
)=
,
故由圖象可得,1°當(dāng)a=2時(shí),f(
)=
=1,
y=f(x)與y=1只存在兩個(gè)交點(diǎn);
2°當(dāng)0<a<2時(shí),f(
)=
<1,
y=f(x)與y=1只存在一個(gè)交點(diǎn);
3°當(dāng)a>2時(shí),f(
)=
>1,
y=f(x)與y=1只存在三個(gè)交點(diǎn).
③當(dāng)a<0時(shí),
>a,
故由圖象可得,
y=f(x)與y=1只存在一個(gè)交點(diǎn).
綜上所述:當(dāng)a>2時(shí),g(x)存在三個(gè)零點(diǎn);
當(dāng)a=2時(shí),g(x)存在兩個(gè)零點(diǎn);
當(dāng)a<2時(shí),g(x)存在一個(gè)零點(diǎn).
點(diǎn)評:本題考查函數(shù)的單調(diào)性的運(yùn)用:求單調(diào)區(qū)間,考查函數(shù)和方程的思想,函數(shù)零點(diǎn)的判斷,考查數(shù)形結(jié)合和分類討論的思想方法,屬于中檔題和易錯(cuò)題.