2.假設(shè)你家訂了一盒牛奶,送奶人可能在早上6:30---7:30之間把牛奶送到你家,你離開(kāi)家去學(xué)校的時(shí)間在早上7:00-8:00之間,則你在離開(kāi)家前能得到牛奶的概率是$\frac{7}{8}$.

分析 利用題意首先確定該問(wèn)題為幾何概型,然后畫出滿足題意的圖形,最后利用幾何概型進(jìn)行計(jì)算即可.

解答 解:設(shè)送牛奶人到達(dá)的時(shí)間為x,你離家去學(xué)校的時(shí)間為y,記你離家前能拿到牛奶為事件A;
以橫坐標(biāo)表示牛奶送到時(shí)間,以縱坐標(biāo)表示你離家時(shí)間,建立平面直角坐標(biāo)系,
你離家前能得到牛奶的事件構(gòu)成區(qū)域如圖示:



由于隨機(jī)試驗(yàn)落在方形區(qū)域內(nèi)任何一點(diǎn)是等可能的,所以符合幾何概型的條件.
根據(jù)題意,只要點(diǎn)落到陰影部分,就表示你在離開(kāi)家前能得到牛奶,即事件A發(fā)生,
所以 $P(A)=1-\frac{\frac{1}{2}×\frac{1}{2}×\frac{1}{2}}{1×1}=\frac{7}{8}$,
故答案為:$\frac{7}{8}$.

點(diǎn)評(píng) 本題考查幾何概型,數(shù)形結(jié)合解題等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.過(guò)點(diǎn)P(4,2)且與曲線$y=\frac{x}{x-2}$在點(diǎn)Q(1,-1)處的切線垂直的直線方程為x-2y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xOy中,直線l的方程為x-y-4=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.$.
(1)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為$(4,\frac{π}{2})$,求過(guò)點(diǎn)P且與直線l垂直的直線方程
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.解關(guān)于x的不等式ax2+(a-2)x-2≥0(a≥0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.在△ABC中,AB=5,AC=6,BC=7,S△ABC=6$\sqrt{6}$,O是△ABC的內(nèi)心,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中0≤x≤1,0≤y≤1,則動(dòng)點(diǎn)P的軌跡所覆蓋的面積是( 。
A.$\frac{{10\sqrt{6}}}{3}$B.$\frac{{5\sqrt{6}}}{3}$C.$\frac{10}{3}$D.$\frac{20}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若函數(shù)y=f(x)的定義域是[0,3],則函數(shù)g(x)=$\frac{f(2x)}{|x|+x}$的定義域是( 。
A.[0,1)∪(1,2]B.$(0,1)∪(1,\frac{3}{2}]$C.$(0,\frac{3}{2}]$D.[1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=-x2+2(a-1)x+2在(-∞,4]上是增函數(shù),則實(shí)數(shù)a的范圍是( 。
A.a≥5B.a≥3C.a≤3D.a≤-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知平面向量$\overrightarrow a=({2,-1}),\overrightarrow b=({m,2})$,且$\overrightarrow a⊥\overrightarrow b$,則$|{\overrightarrow a+2\overrightarrow b}|$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)φ∈R,則“φ=0”是“f(x)=cos(2x+φ)(x∈R)為偶函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.即不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案